Primitive Type i32 [−]
The 32-bit signed integer type.
Methods
impl i32
const fn min_value() -> i32
1.0.0
Returns the smallest value that can be represented by this integer type.
const fn max_value() -> i32
1.0.0
Returns the largest value that can be represented by this integer type.
fn from_str_radix(src: &str, radix: u32) -> Result<i32, ParseIntError>
1.0.0
Converts a string slice in a given base to an integer.
Leading and trailing whitespace represent an error.
Examples
Basic usage:
fn main() { assert_eq!(i32::from_str_radix("A", 16), Ok(10)); }assert_eq!(i32::from_str_radix("A", 16), Ok(10));
fn count_ones(self) -> u32
1.0.0
Returns the number of ones in the binary representation of self
.
Examples
Basic usage:
fn main() { let n = -0b1000_0000i8; assert_eq!(n.count_ones(), 1); }let n = -0b1000_0000i8; assert_eq!(n.count_ones(), 1);
fn count_zeros(self) -> u32
1.0.0
Returns the number of zeros in the binary representation of self
.
Examples
Basic usage:
fn main() { let n = -0b1000_0000i8; assert_eq!(n.count_zeros(), 7); }let n = -0b1000_0000i8; assert_eq!(n.count_zeros(), 7);
fn leading_zeros(self) -> u32
1.0.0
Returns the number of leading zeros in the binary representation
of self
.
Examples
Basic usage:
fn main() { let n = -1i16; assert_eq!(n.leading_zeros(), 0); }let n = -1i16; assert_eq!(n.leading_zeros(), 0);
fn trailing_zeros(self) -> u32
1.0.0
Returns the number of trailing zeros in the binary representation
of self
.
Examples
Basic usage:
fn main() { let n = -4i8; assert_eq!(n.trailing_zeros(), 2); }let n = -4i8; assert_eq!(n.trailing_zeros(), 2);
fn rotate_left(self, n: u32) -> i32
1.0.0
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFi64; let m = -0x76543210FEDCBA99i64; assert_eq!(n.rotate_left(32), m); }let n = 0x0123456789ABCDEFi64; let m = -0x76543210FEDCBA99i64; assert_eq!(n.rotate_left(32), m);
fn rotate_right(self, n: u32) -> i32
1.0.0
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFi64; let m = -0xFEDCBA987654322i64; assert_eq!(n.rotate_right(4), m); }let n = 0x0123456789ABCDEFi64; let m = -0xFEDCBA987654322i64; assert_eq!(n.rotate_right(4), m);
fn swap_bytes(self) -> i32
1.0.0
Reverses the byte order of the integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFi64; let m = -0x1032547698BADCFFi64; assert_eq!(n.swap_bytes(), m); }let n = 0x0123456789ABCDEFi64; let m = -0x1032547698BADCFFi64; assert_eq!(n.swap_bytes(), m);
fn from_be(x: i32) -> i32
1.0.0
Converts an integer from big endian to the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFi64; if cfg!(target_endian = "big") { assert_eq!(i64::from_be(n), n) } else { assert_eq!(i64::from_be(n), n.swap_bytes()) } }let n = 0x0123456789ABCDEFi64; if cfg!(target_endian = "big") { assert_eq!(i64::from_be(n), n) } else { assert_eq!(i64::from_be(n), n.swap_bytes()) }
fn from_le(x: i32) -> i32
1.0.0
Converts an integer from little endian to the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFi64; if cfg!(target_endian = "little") { assert_eq!(i64::from_le(n), n) } else { assert_eq!(i64::from_le(n), n.swap_bytes()) } }let n = 0x0123456789ABCDEFi64; if cfg!(target_endian = "little") { assert_eq!(i64::from_le(n), n) } else { assert_eq!(i64::from_le(n), n.swap_bytes()) }
fn to_be(self) -> i32
1.0.0
Converts self
to big endian from the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFi64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) } }let n = 0x0123456789ABCDEFi64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }
fn to_le(self) -> i32
1.0.0
Converts self
to little endian from the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFi64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) } }let n = 0x0123456789ABCDEFi64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }
fn checked_add(self, other: i32) -> Option<i32>
1.0.0
Checked integer addition. Computes self + other
, returning None
if overflow occurred.
Examples
Basic usage:
fn main() { assert_eq!(7i16.checked_add(32760), Some(32767)); assert_eq!(8i16.checked_add(32760), None); }assert_eq!(7i16.checked_add(32760), Some(32767)); assert_eq!(8i16.checked_add(32760), None);
fn checked_sub(self, other: i32) -> Option<i32>
1.0.0
Checked integer subtraction. Computes self - other
, returning
None
if underflow occurred.
Examples
Basic usage:
fn main() { assert_eq!((-127i8).checked_sub(1), Some(-128)); assert_eq!((-128i8).checked_sub(1), None); }assert_eq!((-127i8).checked_sub(1), Some(-128)); assert_eq!((-128i8).checked_sub(1), None);
fn checked_mul(self, other: i32) -> Option<i32>
1.0.0
Checked integer multiplication. Computes self * other
, returning
None
if underflow or overflow occurred.
Examples
Basic usage:
fn main() { assert_eq!(6i8.checked_mul(21), Some(126)); assert_eq!(6i8.checked_mul(22), None); }assert_eq!(6i8.checked_mul(21), Some(126)); assert_eq!(6i8.checked_mul(22), None);
fn checked_div(self, other: i32) -> Option<i32>
1.0.0
Checked integer division. Computes self / other
, returning None
if other == 0
or the operation results in underflow or overflow.
Examples
Basic usage:
fn main() { assert_eq!((-127i8).checked_div(-1), Some(127)); assert_eq!((-128i8).checked_div(-1), None); assert_eq!((1i8).checked_div(0), None); }assert_eq!((-127i8).checked_div(-1), Some(127)); assert_eq!((-128i8).checked_div(-1), None); assert_eq!((1i8).checked_div(0), None);
fn checked_rem(self, other: i32) -> Option<i32>
1.7.0
Checked integer remainder. Computes self % other
, returning None
if other == 0
or the operation results in underflow or overflow.
Examples
Basic usage:
fn main() { use std::i32; assert_eq!(5i32.checked_rem(2), Some(1)); assert_eq!(5i32.checked_rem(0), None); assert_eq!(i32::MIN.checked_rem(-1), None); }use std::i32; assert_eq!(5i32.checked_rem(2), Some(1)); assert_eq!(5i32.checked_rem(0), None); assert_eq!(i32::MIN.checked_rem(-1), None);
fn checked_neg(self) -> Option<i32>
1.7.0
Checked negation. Computes -self
, returning None
if self == MIN
.
Examples
Basic usage:
fn main() { use std::i32; assert_eq!(5i32.checked_neg(), Some(-5)); assert_eq!(i32::MIN.checked_neg(), None); }use std::i32; assert_eq!(5i32.checked_neg(), Some(-5)); assert_eq!(i32::MIN.checked_neg(), None);
fn checked_shl(self, rhs: u32) -> Option<i32>
1.7.0
Checked shift left. Computes self << rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
fn main() { assert_eq!(0x10i32.checked_shl(4), Some(0x100)); assert_eq!(0x10i32.checked_shl(33), None); }assert_eq!(0x10i32.checked_shl(4), Some(0x100)); assert_eq!(0x10i32.checked_shl(33), None);
fn checked_shr(self, rhs: u32) -> Option<i32>
1.7.0
Checked shift right. Computes self >> rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
fn main() { assert_eq!(0x10i32.checked_shr(4), Some(0x1)); assert_eq!(0x10i32.checked_shr(33), None); }assert_eq!(0x10i32.checked_shr(4), Some(0x1)); assert_eq!(0x10i32.checked_shr(33), None);
fn saturating_add(self, other: i32) -> i32
1.0.0
Saturating integer addition. Computes self + other
, saturating at
the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { assert_eq!(100i8.saturating_add(1), 101); assert_eq!(100i8.saturating_add(127), 127); }assert_eq!(100i8.saturating_add(1), 101); assert_eq!(100i8.saturating_add(127), 127);
fn saturating_sub(self, other: i32) -> i32
1.0.0
Saturating integer subtraction. Computes self - other
, saturating
at the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { assert_eq!(100i8.saturating_sub(127), -27); assert_eq!((-100i8).saturating_sub(127), -128); }assert_eq!(100i8.saturating_sub(127), -27); assert_eq!((-100i8).saturating_sub(127), -128);
fn saturating_mul(self, other: i32) -> i32
1.7.0
Saturating integer multiplication. Computes self * other
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { use std::i32; assert_eq!(100i32.saturating_mul(127), 12700); assert_eq!((1i32 << 23).saturating_mul(1 << 23), i32::MAX); assert_eq!((-1i32 << 23).saturating_mul(1 << 23), i32::MIN); }use std::i32; assert_eq!(100i32.saturating_mul(127), 12700); assert_eq!((1i32 << 23).saturating_mul(1 << 23), i32::MAX); assert_eq!((-1i32 << 23).saturating_mul(1 << 23), i32::MIN);
fn wrapping_add(self, rhs: i32) -> i32
1.0.0
Wrapping (modular) addition. Computes self + other
,
wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(100i8.wrapping_add(27), 127); assert_eq!(100i8.wrapping_add(127), -29); }assert_eq!(100i8.wrapping_add(27), 127); assert_eq!(100i8.wrapping_add(127), -29);
fn wrapping_sub(self, rhs: i32) -> i32
1.0.0
Wrapping (modular) subtraction. Computes self - other
,
wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(0i8.wrapping_sub(127), -127); assert_eq!((-2i8).wrapping_sub(127), 127); }assert_eq!(0i8.wrapping_sub(127), -127); assert_eq!((-2i8).wrapping_sub(127), 127);
fn wrapping_mul(self, rhs: i32) -> i32
1.0.0
Wrapping (modular) multiplication. Computes self * other
, wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(10i8.wrapping_mul(12), 120); assert_eq!(11i8.wrapping_mul(12), -124); }assert_eq!(10i8.wrapping_mul(12), 120); assert_eq!(11i8.wrapping_mul(12), -124);
fn wrapping_div(self, rhs: i32) -> i32
1.2.0
Wrapping (modular) division. Computes self / other
,
wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one
divides MIN / -1
on a signed type (where MIN
is the
negative minimal value for the type); this is equivalent
to -MIN
, a positive value that is too large to represent
in the type. In such a case, this function returns MIN
itself.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
fn main() { assert_eq!(100u8.wrapping_div(10), 10); assert_eq!((-128i8).wrapping_div(-1), -128); }assert_eq!(100u8.wrapping_div(10), 10); assert_eq!((-128i8).wrapping_div(-1), -128);
fn wrapping_rem(self, rhs: i32) -> i32
1.2.0
Wrapping (modular) remainder. Computes self % other
,
wrapping around at the boundary of the type.
Such wrap-around never actually occurs mathematically;
implementation artifacts make x % y
invalid for MIN / -1
on a signed type (where MIN
is the negative
minimal value). In such a case, this function returns 0
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
fn main() { assert_eq!(100i8.wrapping_rem(10), 0); assert_eq!((-128i8).wrapping_rem(-1), 0); }assert_eq!(100i8.wrapping_rem(10), 0); assert_eq!((-128i8).wrapping_rem(-1), 0);
fn wrapping_neg(self) -> i32
1.2.0
Wrapping (modular) negation. Computes -self
,
wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one
negates MIN
on a signed type (where MIN
is the
negative minimal value for the type); this is a positive
value that is too large to represent in the type. In such
a case, this function returns MIN
itself.
Examples
Basic usage:
fn main() { assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128); }assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128);
fn wrapping_shl(self, rhs: u32) -> i32
1.2.0
Panic-free bitwise shift-left; yields self << mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the
RHS of a wrapping shift-left is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_left
function, which may
be what you want instead.
Examples
Basic usage:
fn main() { assert_eq!((-1i8).wrapping_shl(7), -128); assert_eq!((-1i8).wrapping_shl(8), -1); }assert_eq!((-1i8).wrapping_shl(7), -128); assert_eq!((-1i8).wrapping_shl(8), -1);
fn wrapping_shr(self, rhs: u32) -> i32
1.2.0
Panic-free bitwise shift-right; yields self >> mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the
RHS of a wrapping shift-right is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_right
function, which may
be what you want instead.
Examples
Basic usage:
fn main() { assert_eq!((-128i8).wrapping_shr(7), -1); assert_eq!((-128i8).wrapping_shr(8), -128); }assert_eq!((-128i8).wrapping_shr(7), -1); assert_eq!((-128i8).wrapping_shr(8), -128);
fn overflowing_add(self, rhs: i32) -> (i32, bool)
1.7.0
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(5i32.overflowing_add(2), (7, false)); assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true)); }use std::i32; assert_eq!(5i32.overflowing_add(2), (7, false)); assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true));
fn overflowing_sub(self, rhs: i32) -> (i32, bool)
1.7.0
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(5i32.overflowing_sub(2), (3, false)); assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true)); }use std::i32; assert_eq!(5i32.overflowing_sub(2), (3, false)); assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true));
fn overflowing_mul(self, rhs: i32) -> (i32, bool)
1.7.0
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { assert_eq!(5i32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true)); }assert_eq!(5i32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
fn overflowing_div(self, rhs: i32) -> (i32, bool)
1.7.0
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(5i32.overflowing_div(2), (2, false)); assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true)); }use std::i32; assert_eq!(5i32.overflowing_div(2), (2, false)); assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true));
fn overflowing_rem(self, rhs: i32) -> (i32, bool)
1.7.0
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(5i32.overflowing_rem(2), (1, false)); assert_eq!(i32::MIN.overflowing_rem(-1), (0, true)); }use std::i32; assert_eq!(5i32.overflowing_rem(2), (1, false)); assert_eq!(i32::MIN.overflowing_rem(-1), (0, true));
fn overflowing_neg(self) -> (i32, bool)
1.7.0
Negates self, overflowing if this is equal to the minimum value.
Returns a tuple of the negated version of self along with a boolean
indicating whether an overflow happened. If self
is the minimum
value (e.g. i32::MIN
for values of type i32
), then the minimum
value will be returned again and true
will be returned for an
overflow happening.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(2i32.overflowing_neg(), (-2, false)); assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true)); }use std::i32; assert_eq!(2i32.overflowing_neg(), (-2, false)); assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true));
fn overflowing_shl(self, rhs: u32) -> (i32, bool)
1.7.0
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
fn main() { assert_eq!(0x10i32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10i32.overflowing_shl(36), (0x100, true)); }assert_eq!(0x10i32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10i32.overflowing_shl(36), (0x100, true));
fn overflowing_shr(self, rhs: u32) -> (i32, bool)
1.7.0
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
fn main() { assert_eq!(0x10i32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10i32.overflowing_shr(36), (0x1, true)); }assert_eq!(0x10i32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
fn pow(self, exp: u32) -> i32
1.0.0
Raises self to the power of exp
, using exponentiation by squaring.
Examples
Basic usage:
fn main() { let x: i32 = 2; // or any other integer type assert_eq!(x.pow(4), 16); }let x: i32 = 2; // or any other integer type assert_eq!(x.pow(4), 16);
fn abs(self) -> i32
1.0.0
Computes the absolute value of self
.
Overflow behavior
The absolute value of i32::min_value()
cannot be represented as an
i32
, and attempting to calculate it will cause an overflow. This
means that code in debug mode will trigger a panic on this case and
optimized code will return i32::min_value()
without a panic.
Examples
Basic usage:
fn main() { assert_eq!(10i8.abs(), 10); assert_eq!((-10i8).abs(), 10); }assert_eq!(10i8.abs(), 10); assert_eq!((-10i8).abs(), 10);
fn signum(self) -> i32
1.0.0
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
Examples
Basic usage:
fn main() { assert_eq!(10i8.signum(), 1); assert_eq!(0i8.signum(), 0); assert_eq!((-10i8).signum(), -1); }assert_eq!(10i8.signum(), 1); assert_eq!(0i8.signum(), 0); assert_eq!((-10i8).signum(), -1);
fn is_positive(self) -> bool
1.0.0
Returns true
if self
is positive and false
if the number
is zero or negative.
Examples
Basic usage:
fn main() { assert!(10i8.is_positive()); assert!(!(-10i8).is_positive()); }assert!(10i8.is_positive()); assert!(!(-10i8).is_positive());
fn is_negative(self) -> bool
1.0.0
Returns true
if self
is negative and false
if the number
is zero or positive.
Examples
Basic usage:
fn main() { assert!((-10i8).is_negative()); assert!(!10i8.is_negative()); }assert!((-10i8).is_negative()); assert!(!10i8.is_negative());
Trait Implementations
impl Zero for i32
impl One for i32
impl FromStr for i32
1.0.0
type Err = ParseIntError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<i32, ParseIntError>
Parses a string s
to return a value of this type. Read more
impl TryFrom<i8> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i8) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<i16> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i16) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<i32> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i32) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<i64> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i64) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<isize> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: isize) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<u8> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u8) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<u16> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u16) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<u32> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u32) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<u64> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u64) -> Result<i32, TryFromIntError>
Performs the conversion.
impl TryFrom<usize> for i32
1.0.0
type Err = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: usize) -> Result<i32, TryFromIntError>
Performs the conversion.
impl From<i8> for i32
1.5.0
impl From<i16> for i32
1.5.0
impl From<u8> for i32
1.5.0
impl From<u16> for i32
1.5.0
impl Zeroable for i32
impl Add<i32> for i32
1.0.0
type Output = i32
The resulting type after applying the +
operator
fn add(self, other: i32) -> i32
The method for the +
operator
impl<'a> Add<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the +
operator
fn add(self, other: i32) -> i32::Output
The method for the +
operator
impl<'a> Add<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the +
operator
fn add(self, other: &'a i32) -> i32::Output
The method for the +
operator
impl<'a, 'b> Add<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the +
operator
fn add(self, other: &'a i32) -> i32::Output
The method for the +
operator
impl Sub<i32> for i32
1.0.0
type Output = i32
The resulting type after applying the -
operator
fn sub(self, other: i32) -> i32
The method for the -
operator
impl<'a> Sub<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the -
operator
fn sub(self, other: i32) -> i32::Output
The method for the -
operator
impl<'a> Sub<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the -
operator
fn sub(self, other: &'a i32) -> i32::Output
The method for the -
operator
impl<'a, 'b> Sub<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the -
operator
fn sub(self, other: &'a i32) -> i32::Output
The method for the -
operator
impl Mul<i32> for i32
1.0.0
type Output = i32
The resulting type after applying the *
operator
fn mul(self, other: i32) -> i32
The method for the *
operator
impl<'a> Mul<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the *
operator
fn mul(self, other: i32) -> i32::Output
The method for the *
operator
impl<'a> Mul<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the *
operator
fn mul(self, other: &'a i32) -> i32::Output
The method for the *
operator
impl<'a, 'b> Mul<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the *
operator
fn mul(self, other: &'a i32) -> i32::Output
The method for the *
operator
impl Div<i32> for i32
1.0.0
This operation rounds towards zero, truncating any fractional part of the exact result.
type Output = i32
The resulting type after applying the /
operator
fn div(self, other: i32) -> i32
The method for the /
operator
impl<'a> Div<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the /
operator
fn div(self, other: i32) -> i32::Output
The method for the /
operator
impl<'a> Div<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the /
operator
fn div(self, other: &'a i32) -> i32::Output
The method for the /
operator
impl<'a, 'b> Div<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the /
operator
fn div(self, other: &'a i32) -> i32::Output
The method for the /
operator
impl Rem<i32> for i32
1.0.0
This operation satisfies n % d == n - (n / d) * d
. The
result has the same sign as the left operand.
type Output = i32
The resulting type after applying the %
operator
fn rem(self, other: i32) -> i32
The method for the %
operator
impl<'a> Rem<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the %
operator
fn rem(self, other: i32) -> i32::Output
The method for the %
operator
impl<'a> Rem<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the %
operator
fn rem(self, other: &'a i32) -> i32::Output
The method for the %
operator
impl<'a, 'b> Rem<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the %
operator
fn rem(self, other: &'a i32) -> i32::Output
The method for the %
operator
impl Neg for i32
1.0.0
type Output = i32
The resulting type after applying the -
operator
fn neg(self) -> i32
The method for the unary -
operator
impl<'a> Neg for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the -
operator
fn neg(self) -> i32::Output
The method for the unary -
operator
impl Not for i32
1.0.0
type Output = i32
The resulting type after applying the !
operator
fn not(self) -> i32
The method for the unary !
operator
impl<'a> Not for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the !
operator
fn not(self) -> i32::Output
The method for the unary !
operator
impl BitAnd<i32> for i32
1.0.0
type Output = i32
The resulting type after applying the &
operator
fn bitand(self, rhs: i32) -> i32
The method for the &
operator
impl<'a> BitAnd<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the &
operator
fn bitand(self, other: i32) -> i32::Output
The method for the &
operator
impl<'a> BitAnd<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the &
operator
fn bitand(self, other: &'a i32) -> i32::Output
The method for the &
operator
impl<'a, 'b> BitAnd<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the &
operator
fn bitand(self, other: &'a i32) -> i32::Output
The method for the &
operator
impl BitOr<i32> for i32
1.0.0
type Output = i32
The resulting type after applying the |
operator
fn bitor(self, rhs: i32) -> i32
The method for the |
operator
impl<'a> BitOr<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the |
operator
fn bitor(self, other: i32) -> i32::Output
The method for the |
operator
impl<'a> BitOr<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the |
operator
fn bitor(self, other: &'a i32) -> i32::Output
The method for the |
operator
impl<'a, 'b> BitOr<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the |
operator
fn bitor(self, other: &'a i32) -> i32::Output
The method for the |
operator
impl BitXor<i32> for i32
1.0.0
type Output = i32
The resulting type after applying the ^
operator
fn bitxor(self, other: i32) -> i32
The method for the ^
operator
impl<'a> BitXor<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the ^
operator
fn bitxor(self, other: i32) -> i32::Output
The method for the ^
operator
impl<'a> BitXor<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the ^
operator
fn bitxor(self, other: &'a i32) -> i32::Output
The method for the ^
operator
impl<'a, 'b> BitXor<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the ^
operator
fn bitxor(self, other: &'a i32) -> i32::Output
The method for the ^
operator
impl Shl<u8> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: u8) -> i32
The method for the <<
operator
impl<'a> Shl<u8> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: u8) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a u8> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a u8) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a u8> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a u8) -> i32::Output
The method for the <<
operator
impl Shl<u16> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: u16) -> i32
The method for the <<
operator
impl<'a> Shl<u16> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: u16) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a u16> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a u16) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a u16> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a u16) -> i32::Output
The method for the <<
operator
impl Shl<u32> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: u32) -> i32
The method for the <<
operator
impl<'a> Shl<u32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: u32) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a u32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a u32) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a u32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a u32) -> i32::Output
The method for the <<
operator
impl Shl<u64> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: u64) -> i32
The method for the <<
operator
impl<'a> Shl<u64> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: u64) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a u64> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a u64) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a u64> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a u64) -> i32::Output
The method for the <<
operator
impl Shl<usize> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: usize) -> i32
The method for the <<
operator
impl<'a> Shl<usize> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: usize) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a usize> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a usize) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a usize> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a usize) -> i32::Output
The method for the <<
operator
impl Shl<i8> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: i8) -> i32
The method for the <<
operator
impl<'a> Shl<i8> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: i8) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a i8> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a i8) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a i8> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a i8) -> i32::Output
The method for the <<
operator
impl Shl<i16> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: i16) -> i32
The method for the <<
operator
impl<'a> Shl<i16> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: i16) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a i16> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a i16) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a i16> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a i16) -> i32::Output
The method for the <<
operator
impl Shl<i32> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: i32) -> i32
The method for the <<
operator
impl<'a> Shl<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: i32) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a i32) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a i32) -> i32::Output
The method for the <<
operator
impl Shl<i64> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: i64) -> i32
The method for the <<
operator
impl<'a> Shl<i64> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: i64) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a i64> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a i64) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a i64> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a i64) -> i32::Output
The method for the <<
operator
impl Shl<isize> for i32
1.0.0
type Output = i32
The resulting type after applying the <<
operator
fn shl(self, other: isize) -> i32
The method for the <<
operator
impl<'a> Shl<isize> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: isize) -> i32::Output
The method for the <<
operator
impl<'a> Shl<&'a isize> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a isize) -> i32::Output
The method for the <<
operator
impl<'a, 'b> Shl<&'a isize> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the <<
operator
fn shl(self, other: &'a isize) -> i32::Output
The method for the <<
operator
impl Shr<u8> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: u8) -> i32
The method for the >>
operator
impl<'a> Shr<u8> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: u8) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a u8> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a u8) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a u8> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a u8) -> i32::Output
The method for the >>
operator
impl Shr<u16> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: u16) -> i32
The method for the >>
operator
impl<'a> Shr<u16> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: u16) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a u16> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a u16) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a u16> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a u16) -> i32::Output
The method for the >>
operator
impl Shr<u32> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: u32) -> i32
The method for the >>
operator
impl<'a> Shr<u32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: u32) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a u32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a u32) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a u32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a u32) -> i32::Output
The method for the >>
operator
impl Shr<u64> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: u64) -> i32
The method for the >>
operator
impl<'a> Shr<u64> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: u64) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a u64> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a u64) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a u64> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a u64) -> i32::Output
The method for the >>
operator
impl Shr<usize> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: usize) -> i32
The method for the >>
operator
impl<'a> Shr<usize> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: usize) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a usize> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a usize) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a usize> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a usize) -> i32::Output
The method for the >>
operator
impl Shr<i8> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: i8) -> i32
The method for the >>
operator
impl<'a> Shr<i8> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: i8) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a i8> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a i8) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a i8> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a i8) -> i32::Output
The method for the >>
operator
impl Shr<i16> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: i16) -> i32
The method for the >>
operator
impl<'a> Shr<i16> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: i16) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a i16> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a i16) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a i16> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a i16) -> i32::Output
The method for the >>
operator
impl Shr<i32> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: i32) -> i32
The method for the >>
operator
impl<'a> Shr<i32> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: i32) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a i32> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a i32) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a i32> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a i32) -> i32::Output
The method for the >>
operator
impl Shr<i64> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: i64) -> i32
The method for the >>
operator
impl<'a> Shr<i64> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: i64) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a i64> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a i64) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a i64> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a i64) -> i32::Output
The method for the >>
operator
impl Shr<isize> for i32
1.0.0
type Output = i32
The resulting type after applying the >>
operator
fn shr(self, other: isize) -> i32
The method for the >>
operator
impl<'a> Shr<isize> for &'a i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: isize) -> i32::Output
The method for the >>
operator
impl<'a> Shr<&'a isize> for i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a isize) -> i32::Output
The method for the >>
operator
impl<'a, 'b> Shr<&'a isize> for &'b i32
1.0.0
type Output = i32::Output
The resulting type after applying the >>
operator
fn shr(self, other: &'a isize) -> i32::Output
The method for the >>
operator
impl AddAssign<i32> for i32
1.8.0
fn add_assign(&mut self, other: i32)
The method for the +=
operator
impl SubAssign<i32> for i32
1.8.0
fn sub_assign(&mut self, other: i32)
The method for the -=
operator
impl MulAssign<i32> for i32
1.8.0
fn mul_assign(&mut self, other: i32)
The method for the *=
operator
impl DivAssign<i32> for i32
1.8.0
fn div_assign(&mut self, other: i32)
The method for the /=
operator
impl RemAssign<i32> for i32
1.8.0
fn rem_assign(&mut self, other: i32)
The method for the %=
operator
impl BitAndAssign<i32> for i32
1.8.0
fn bitand_assign(&mut self, other: i32)
The method for the &
operator
impl BitOrAssign<i32> for i32
1.8.0
fn bitor_assign(&mut self, other: i32)
The method for the |=
operator
impl BitXorAssign<i32> for i32
1.8.0
fn bitxor_assign(&mut self, other: i32)
The method for the ^=
operator
impl ShlAssign<u8> for i32
1.8.0
fn shl_assign(&mut self, other: u8)
The method for the <<=
operator
impl ShlAssign<u16> for i32
1.8.0
fn shl_assign(&mut self, other: u16)
The method for the <<=
operator
impl ShlAssign<u32> for i32
1.8.0
fn shl_assign(&mut self, other: u32)
The method for the <<=
operator
impl ShlAssign<u64> for i32
1.8.0
fn shl_assign(&mut self, other: u64)
The method for the <<=
operator
impl ShlAssign<usize> for i32
1.8.0
fn shl_assign(&mut self, other: usize)
The method for the <<=
operator
impl ShlAssign<i8> for i32
1.8.0
fn shl_assign(&mut self, other: i8)
The method for the <<=
operator
impl ShlAssign<i16> for i32
1.8.0
fn shl_assign(&mut self, other: i16)
The method for the <<=
operator
impl ShlAssign<i32> for i32
1.8.0
fn shl_assign(&mut self, other: i32)
The method for the <<=
operator
impl ShlAssign<i64> for i32
1.8.0
fn shl_assign(&mut self, other: i64)
The method for the <<=
operator
impl ShlAssign<isize> for i32
1.8.0
fn shl_assign(&mut self, other: isize)
The method for the <<=
operator
impl ShrAssign<u8> for i32
1.8.0
fn shr_assign(&mut self, other: u8)
The method for the >>=
operator
impl ShrAssign<u16> for i32
1.8.0
fn shr_assign(&mut self, other: u16)
The method for the >>=
operator
impl ShrAssign<u32> for i32
1.8.0
fn shr_assign(&mut self, other: u32)
The method for the >>=
operator
impl ShrAssign<u64> for i32
1.8.0
fn shr_assign(&mut self, other: u64)
The method for the >>=
operator
impl ShrAssign<usize> for i32
1.8.0
fn shr_assign(&mut self, other: usize)
The method for the >>=
operator
impl ShrAssign<i8> for i32
1.8.0
fn shr_assign(&mut self, other: i8)
The method for the >>=
operator
impl ShrAssign<i16> for i32
1.8.0
fn shr_assign(&mut self, other: i16)
The method for the >>=
operator
impl ShrAssign<i32> for i32
1.8.0
fn shr_assign(&mut self, other: i32)
The method for the >>=
operator
impl ShrAssign<i64> for i32
1.8.0
fn shr_assign(&mut self, other: i64)
The method for the >>=
operator
impl ShrAssign<isize> for i32
1.8.0
fn shr_assign(&mut self, other: isize)
The method for the >>=
operator
impl PartialEq<i32> for i32
1.0.0
fn eq(&self, other: &i32) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &i32) -> bool
This method tests for !=
.
impl Eq for i32
1.0.0
impl PartialOrd<i32> for i32
1.0.0
fn partial_cmp(&self, other: &i32) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, other: &i32) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, other: &i32) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn ge(&self, other: &i32) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
fn gt(&self, other: &i32) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
impl Ord for i32
1.0.0
fn cmp(&self, other: &i32) -> Ordering
This method returns an Ordering
between self
and other
. Read more
impl Clone for i32
1.0.0
fn clone(&self) -> i32
Returns a deep copy of the value.
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl Default for i32
1.0.0
impl Step for i32
fn step(&self, by: &i32) -> Option<i32>
Steps self
if possible.
fn steps_between(start: &i32, end: &i32, by: &i32) -> Option<usize>
Returns the number of steps between two step objects. The count is inclusive of start
and exclusive of end
. Read more
impl Hash for i32
1.0.0
fn hash<H>(&self, state: &mut H) where H: Hasher
Feeds this value into the state given, updating the hasher as necessary.
fn hash_slice<H>(data: &[i32], state: &mut H) where H: Hasher
Feeds a slice of this type into the state provided.