1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use back::lto;
use back::link::{get_linker, remove};
use session::config::{OutputFilenames, Passes, SomePasses, AllPasses};
use session::Session;
use session::config::{self, OutputType};
use llvm;
use llvm::{ModuleRef, TargetMachineRef, PassManagerRef, DiagnosticInfoRef, ContextRef};
use llvm::SMDiagnosticRef;
use {CrateTranslation, ModuleTranslation};
use util::common::time;
use util::common::path2cstr;
use syntax::codemap::MultiSpan;
use syntax::errors::{self, Handler, Level, RenderSpan};
use syntax::errors::emitter::CoreEmitter;

use std::collections::HashMap;
use std::ffi::{CStr, CString};
use std::fs;
use std::path::{Path, PathBuf};
use std::str;
use std::sync::{Arc, Mutex};
use std::sync::mpsc::channel;
use std::thread;
use libc::{c_uint, c_void};

pub fn llvm_err(handler: &errors::Handler, msg: String) -> ! {
    match llvm::last_error() {
        Some(err) => panic!(handler.fatal(&format!("{}: {}", msg, err))),
        None => panic!(handler.fatal(&msg)),
    }
}

pub fn write_output_file(
        handler: &errors::Handler,
        target: llvm::TargetMachineRef,
        pm: llvm::PassManagerRef,
        m: ModuleRef,
        output: &Path,
        file_type: llvm::FileType) {
    unsafe {
        let output_c = path2cstr(output);
        let result = llvm::LLVMRustWriteOutputFile(
                target, pm, m, output_c.as_ptr(), file_type);
        if !result {
            llvm_err(handler, format!("could not write output to {}", output.display()));
        }
    }
}


struct Diagnostic {
    msg: String,
    code: Option<String>,
    lvl: Level,
}

// We use an Arc instead of just returning a list of diagnostics from the
// child thread because we need to make sure that the messages are seen even
// if the child thread panics (for example, when `fatal` is called).
#[derive(Clone)]
struct SharedEmitter {
    buffer: Arc<Mutex<Vec<Diagnostic>>>,
}

impl SharedEmitter {
    fn new() -> SharedEmitter {
        SharedEmitter {
            buffer: Arc::new(Mutex::new(Vec::new())),
        }
    }

    fn dump(&mut self, handler: &Handler) {
        let mut buffer = self.buffer.lock().unwrap();
        for diag in &*buffer {
            match diag.code {
                Some(ref code) => {
                    handler.emit_with_code(&MultiSpan::new(),
                                           &diag.msg,
                                           &code[..],
                                           diag.lvl);
                },
                None => {
                    handler.emit(&MultiSpan::new(),
                                 &diag.msg,
                                 diag.lvl);
                },
            }
        }
        buffer.clear();
    }
}

impl CoreEmitter for SharedEmitter {
    fn emit_message(&mut self,
                    _rsp: &RenderSpan,
                    msg: &str,
                    code: Option<&str>,
                    lvl: Level,
                    _is_header: bool,
                    _show_snippet: bool) {
        self.buffer.lock().unwrap().push(Diagnostic {
            msg: msg.to_string(),
            code: code.map(|s| s.to_string()),
            lvl: lvl,
        });
    }
}


// On android, we by default compile for armv7 processors. This enables
// things like double word CAS instructions (rather than emulating them)
// which are *far* more efficient. This is obviously undesirable in some
// cases, so if any sort of target feature is specified we don't append v7
// to the feature list.
//
// On iOS only armv7 and newer are supported. So it is useful to
// get all hardware potential via VFP3 (hardware floating point)
// and NEON (SIMD) instructions supported by LLVM.
// Note that without those flags various linking errors might
// arise as some of intrinsics are converted into function calls
// and nobody provides implementations those functions
fn target_feature(sess: &Session) -> String {
    format!("{},{}", sess.target.target.options.features, sess.opts.cg.target_feature)
}

fn get_llvm_opt_level(optimize: config::OptLevel) -> llvm::CodeGenOptLevel {
    match optimize {
      config::OptLevel::No => llvm::CodeGenLevelNone,
      config::OptLevel::Less => llvm::CodeGenLevelLess,
      config::OptLevel::Default => llvm::CodeGenLevelDefault,
      config::OptLevel::Aggressive => llvm::CodeGenLevelAggressive,
      _ => llvm::CodeGenLevelDefault,
    }
}

fn get_llvm_opt_size(optimize: config::OptLevel) -> llvm::CodeGenOptSize {
    match optimize {
      config::OptLevel::Size => llvm::CodeGenOptSizeDefault,
      config::OptLevel::SizeMin => llvm::CodeGenOptSizeAggressive,
      _ => llvm::CodeGenOptSizeNone,
    }
}

pub fn create_target_machine(sess: &Session) -> TargetMachineRef {
    let reloc_model_arg = match sess.opts.cg.relocation_model {
        Some(ref s) => &s[..],
        None => &sess.target.target.options.relocation_model[..],
    };
    let reloc_model = match reloc_model_arg {
        "pic" => llvm::RelocPIC,
        "static" => llvm::RelocStatic,
        "default" => llvm::RelocDefault,
        "dynamic-no-pic" => llvm::RelocDynamicNoPic,
        _ => {
            sess.err(&format!("{:?} is not a valid relocation mode",
                             sess.opts
                                 .cg
                                 .relocation_model));
            sess.abort_if_errors();
            bug!();
        }
    };

    let opt_level = get_llvm_opt_level(sess.opts.optimize);
    let use_softfp = sess.opts.cg.soft_float;

    let any_library = sess.crate_types.borrow().iter().any(|ty| {
        *ty != config::CrateTypeExecutable
    });

    let ffunction_sections = sess.target.target.options.function_sections;
    let fdata_sections = ffunction_sections;

    let code_model_arg = match sess.opts.cg.code_model {
        Some(ref s) => &s[..],
        None => &sess.target.target.options.code_model[..],
    };

    let code_model = match code_model_arg {
        "default" => llvm::CodeModelDefault,
        "small" => llvm::CodeModelSmall,
        "kernel" => llvm::CodeModelKernel,
        "medium" => llvm::CodeModelMedium,
        "large" => llvm::CodeModelLarge,
        _ => {
            sess.err(&format!("{:?} is not a valid code model",
                             sess.opts
                                 .cg
                                 .code_model));
            sess.abort_if_errors();
            bug!();
        }
    };

    let triple = &sess.target.target.llvm_target;

    let tm = unsafe {
        let triple = CString::new(triple.as_bytes()).unwrap();
        let cpu = match sess.opts.cg.target_cpu {
            Some(ref s) => &**s,
            None => &*sess.target.target.options.cpu
        };
        let cpu = CString::new(cpu.as_bytes()).unwrap();
        let features = CString::new(target_feature(sess).as_bytes()).unwrap();
        llvm::LLVMRustCreateTargetMachine(
            triple.as_ptr(), cpu.as_ptr(), features.as_ptr(),
            code_model,
            reloc_model,
            opt_level,
            use_softfp,
            !any_library && reloc_model == llvm::RelocPIC,
            ffunction_sections,
            fdata_sections,
        )
    };

    if tm.is_null() {
        llvm_err(sess.diagnostic(),
                 format!("Could not create LLVM TargetMachine for triple: {}",
                         triple).to_string());
    } else {
        return tm;
    };
}


/// Module-specific configuration for `optimize_and_codegen`.
#[derive(Clone)]
pub struct ModuleConfig {
    /// LLVM TargetMachine to use for codegen.
    tm: TargetMachineRef,
    /// Names of additional optimization passes to run.
    passes: Vec<String>,
    /// Some(level) to optimize at a certain level, or None to run
    /// absolutely no optimizations (used for the metadata module).
    opt_level: Option<llvm::CodeGenOptLevel>,

    /// Some(level) to optimize binary size, or None to not affect program size.
    opt_size: Option<llvm::CodeGenOptSize>,

    // Flags indicating which outputs to produce.
    emit_no_opt_bc: bool,
    emit_bc: bool,
    emit_lto_bc: bool,
    emit_ir: bool,
    emit_asm: bool,
    emit_obj: bool,
    // Miscellaneous flags.  These are mostly copied from command-line
    // options.
    no_verify: bool,
    no_prepopulate_passes: bool,
    no_builtins: bool,
    time_passes: bool,
    vectorize_loop: bool,
    vectorize_slp: bool,
    merge_functions: bool,
    inline_threshold: Option<usize>,
    // Instead of creating an object file by doing LLVM codegen, just
    // make the object file bitcode. Provides easy compatibility with
    // emscripten's ecc compiler, when used as the linker.
    obj_is_bitcode: bool,
}

unsafe impl Send for ModuleConfig { }

impl ModuleConfig {
    fn new(tm: TargetMachineRef, passes: Vec<String>) -> ModuleConfig {
        ModuleConfig {
            tm: tm,
            passes: passes,
            opt_level: None,
            opt_size: None,

            emit_no_opt_bc: false,
            emit_bc: false,
            emit_lto_bc: false,
            emit_ir: false,
            emit_asm: false,
            emit_obj: false,
            obj_is_bitcode: false,

            no_verify: false,
            no_prepopulate_passes: false,
            no_builtins: false,
            time_passes: false,
            vectorize_loop: false,
            vectorize_slp: false,
            merge_functions: false,
            inline_threshold: None
        }
    }

    fn set_flags(&mut self, sess: &Session, trans: &CrateTranslation) {
        self.no_verify = sess.no_verify();
        self.no_prepopulate_passes = sess.opts.cg.no_prepopulate_passes;
        self.no_builtins = trans.no_builtins;
        self.time_passes = sess.time_passes();
        self.inline_threshold = sess.opts.cg.inline_threshold;
        self.obj_is_bitcode = sess.target.target.options.obj_is_bitcode;

        // Copy what clang does by turning on loop vectorization at O2 and
        // slp vectorization at O3. Otherwise configure other optimization aspects
        // of this pass manager builder.
        self.vectorize_loop = !sess.opts.cg.no_vectorize_loops &&
                             (sess.opts.optimize == config::OptLevel::Default ||
                              sess.opts.optimize == config::OptLevel::Aggressive);
        self.vectorize_slp = !sess.opts.cg.no_vectorize_slp &&
                            sess.opts.optimize == config::OptLevel::Aggressive;

        self.merge_functions = sess.opts.optimize == config::OptLevel::Default ||
                               sess.opts.optimize == config::OptLevel::Aggressive;
    }
}

/// Additional resources used by optimize_and_codegen (not module specific)
struct CodegenContext<'a> {
    // Extra resources used for LTO: (sess, reachable).  This will be `None`
    // when running in a worker thread.
    lto_ctxt: Option<(&'a Session, &'a [String])>,
    // Handler to use for diagnostics produced during codegen.
    handler: &'a Handler,
    // LLVM passes added by plugins.
    plugin_passes: Vec<String>,
    // LLVM optimizations for which we want to print remarks.
    remark: Passes,
    // Worker thread number
    worker: usize,
}

impl<'a> CodegenContext<'a> {
    fn new_with_session(sess: &'a Session, reachable: &'a [String]) -> CodegenContext<'a> {
        CodegenContext {
            lto_ctxt: Some((sess, reachable)),
            handler: sess.diagnostic(),
            plugin_passes: sess.plugin_llvm_passes.borrow().clone(),
            remark: sess.opts.cg.remark.clone(),
            worker: 0,
        }
    }
}

struct HandlerFreeVars<'a> {
    llcx: ContextRef,
    cgcx: &'a CodegenContext<'a>,
}

unsafe extern "C" fn report_inline_asm<'a, 'b>(cgcx: &'a CodegenContext<'a>,
                                               msg: &'b str,
                                               cookie: c_uint) {
    use syntax::codemap::ExpnId;

    match cgcx.lto_ctxt {
        Some((sess, _)) => {
            sess.codemap().with_expn_info(ExpnId::from_u32(cookie), |info| match info {
                Some(ei) => sess.span_err(ei.call_site, msg),
                None     => sess.err(msg),
            });
        }

        None => {
            cgcx.handler.struct_err(msg)
                        .note("build without -C codegen-units for more exact errors")
                        .emit();
        }
    }
}

unsafe extern "C" fn inline_asm_handler(diag: SMDiagnosticRef,
                                        user: *const c_void,
                                        cookie: c_uint) {
    let HandlerFreeVars { cgcx, .. } = *(user as *const HandlerFreeVars);

    let msg = llvm::build_string(|s| llvm::LLVMWriteSMDiagnosticToString(diag, s))
        .expect("non-UTF8 SMDiagnostic");

    report_inline_asm(cgcx, &msg[..], cookie);
}

unsafe extern "C" fn diagnostic_handler(info: DiagnosticInfoRef, user: *mut c_void) {
    let HandlerFreeVars { llcx, cgcx } = *(user as *const HandlerFreeVars);

    match llvm::diagnostic::Diagnostic::unpack(info) {
        llvm::diagnostic::InlineAsm(inline) => {
            report_inline_asm(cgcx,
                              &llvm::twine_to_string(inline.message),
                              inline.cookie);
        }

        llvm::diagnostic::Optimization(opt) => {
            let pass_name = str::from_utf8(CStr::from_ptr(opt.pass_name).to_bytes())
                                .ok()
                                .expect("got a non-UTF8 pass name from LLVM");
            let enabled = match cgcx.remark {
                AllPasses => true,
                SomePasses(ref v) => v.iter().any(|s| *s == pass_name),
            };

            if enabled {
                let loc = llvm::debug_loc_to_string(llcx, opt.debug_loc);
                cgcx.handler.note_without_error(&format!("optimization {} for {} at {}: {}",
                                                opt.kind.describe(),
                                                pass_name,
                                                if loc.is_empty() { "[unknown]" } else { &*loc },
                                                llvm::twine_to_string(opt.message)));
            }
        }

        _ => (),
    }
}

// Unsafe due to LLVM calls.
unsafe fn optimize_and_codegen(cgcx: &CodegenContext,
                               mtrans: ModuleTranslation,
                               config: ModuleConfig,
                               name_extra: String,
                               output_names: OutputFilenames) {
    let ModuleTranslation { llmod, llcx } = mtrans;
    let tm = config.tm;

    // llcx doesn't outlive this function, so we can put this on the stack.
    let fv = HandlerFreeVars {
        llcx: llcx,
        cgcx: cgcx,
    };
    let fv = &fv as *const HandlerFreeVars as *mut c_void;

    llvm::LLVMSetInlineAsmDiagnosticHandler(llcx, inline_asm_handler, fv);
    llvm::LLVMContextSetDiagnosticHandler(llcx, diagnostic_handler, fv);

    if config.emit_no_opt_bc {
        let ext = format!("{}.no-opt.bc", name_extra);
        let out = output_names.with_extension(&ext);
        let out = path2cstr(&out);
        llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr());
    }

    if config.opt_level.is_some() {
        // Create the two optimizing pass managers. These mirror what clang
        // does, and are by populated by LLVM's default PassManagerBuilder.
        // Each manager has a different set of passes, but they also share
        // some common passes.
        let fpm = llvm::LLVMCreateFunctionPassManagerForModule(llmod);
        let mpm = llvm::LLVMCreatePassManager();

        // If we're verifying or linting, add them to the function pass
        // manager.
        let addpass = |pass_name: &str| {
            let pass_name = CString::new(pass_name).unwrap();
            let pass = llvm::LLVMRustFindAndCreatePass(pass_name.as_ptr());
            if pass.is_null() {
                return false;
            }
            let pass_manager = match llvm::LLVMRustPassKind(pass) {
                llvm::SupportedPassKind::Function => fpm,
                llvm::SupportedPassKind::Module => mpm,
                llvm::SupportedPassKind::Unsupported => {
                    cgcx.handler.err("Encountered LLVM pass kind we can't handle");
                    return true
                },
            };
            llvm::LLVMRustAddPass(pass_manager, pass);
            true
        };

        if !config.no_verify { assert!(addpass("verify")); }
        if !config.no_prepopulate_passes {
            llvm::LLVMRustAddAnalysisPasses(tm, fpm, llmod);
            llvm::LLVMRustAddAnalysisPasses(tm, mpm, llmod);
            with_llvm_pmb(llmod, &config, &mut |b| {
                llvm::LLVMPassManagerBuilderPopulateFunctionPassManager(b, fpm);
                llvm::LLVMPassManagerBuilderPopulateModulePassManager(b, mpm);
            })
        }

        for pass in &config.passes {
            if !addpass(pass) {
                cgcx.handler.warn(&format!("unknown pass `{}`, ignoring",
                                           pass));
            }
        }

        for pass in &cgcx.plugin_passes {
            if !addpass(pass) {
                cgcx.handler.err(&format!("a plugin asked for LLVM pass \
                                           `{}` but LLVM does not \
                                           recognize it", pass));
            }
        }

        cgcx.handler.abort_if_errors();

        // Finally, run the actual optimization passes
        time(config.time_passes, &format!("llvm function passes [{}]", cgcx.worker), ||
             llvm::LLVMRustRunFunctionPassManager(fpm, llmod));
        time(config.time_passes, &format!("llvm module passes [{}]", cgcx.worker), ||
             llvm::LLVMRunPassManager(mpm, llmod));

        // Deallocate managers that we're now done with
        llvm::LLVMDisposePassManager(fpm);
        llvm::LLVMDisposePassManager(mpm);

        match cgcx.lto_ctxt {
            Some((sess, reachable)) if sess.lto() =>  {
                time(sess.time_passes(), "all lto passes", ||
                     lto::run(sess, llmod, tm, reachable, &config,
                              &name_extra, &output_names));

                if config.emit_lto_bc {
                    let name = format!("{}.lto.bc", name_extra);
                    let out = output_names.with_extension(&name);
                    let out = path2cstr(&out);
                    llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr());
                }
            },
            _ => {},
        }
    }

    // A codegen-specific pass manager is used to generate object
    // files for an LLVM module.
    //
    // Apparently each of these pass managers is a one-shot kind of
    // thing, so we create a new one for each type of output. The
    // pass manager passed to the closure should be ensured to not
    // escape the closure itself, and the manager should only be
    // used once.
    unsafe fn with_codegen<F>(tm: TargetMachineRef,
                              llmod: ModuleRef,
                              no_builtins: bool,
                              f: F) where
        F: FnOnce(PassManagerRef),
    {
        let cpm = llvm::LLVMCreatePassManager();
        llvm::LLVMRustAddAnalysisPasses(tm, cpm, llmod);
        llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins);
        f(cpm);
    }

    // Change what we write and cleanup based on whether obj files are
    // just llvm bitcode. In that case write bitcode, and possibly
    // delete the bitcode if it wasn't requested. Don't generate the
    // machine code, instead copy the .o file from the .bc
    let write_bc = config.emit_bc || config.obj_is_bitcode;
    let rm_bc = !config.emit_bc && config.obj_is_bitcode;
    let write_obj = config.emit_obj && !config.obj_is_bitcode;
    let copy_bc_to_obj = config.emit_obj && config.obj_is_bitcode;

    let bc_out = output_names.with_extension(&format!("{}.bc", name_extra));
    let obj_out = output_names.with_extension(&format!("{}.o", name_extra));

    if write_bc {
        let bc_out_c = path2cstr(&bc_out);
        llvm::LLVMWriteBitcodeToFile(llmod, bc_out_c.as_ptr());
    }

    time(config.time_passes, &format!("codegen passes [{}]", cgcx.worker), || {
        if config.emit_ir {
            let ext = format!("{}.ll", name_extra);
            let out = output_names.with_extension(&ext);
            let out = path2cstr(&out);
            with_codegen(tm, llmod, config.no_builtins, |cpm| {
                llvm::LLVMRustPrintModule(cpm, llmod, out.as_ptr());
                llvm::LLVMDisposePassManager(cpm);
            })
        }

        if config.emit_asm {
            let path = output_names.with_extension(&format!("{}.s", name_extra));

            // We can't use the same module for asm and binary output, because that triggers
            // various errors like invalid IR or broken binaries, so we might have to clone the
            // module to produce the asm output
            let llmod = if config.emit_obj {
                llvm::LLVMCloneModule(llmod)
            } else {
                llmod
            };
            with_codegen(tm, llmod, config.no_builtins, |cpm| {
                write_output_file(cgcx.handler, tm, cpm, llmod, &path,
                                  llvm::AssemblyFileType);
            });
            if config.emit_obj {
                llvm::LLVMDisposeModule(llmod);
            }
        }

        if write_obj {
            with_codegen(tm, llmod, config.no_builtins, |cpm| {
                write_output_file(cgcx.handler, tm, cpm, llmod, &obj_out, llvm::ObjectFileType);
            });
        }
    });

    if copy_bc_to_obj {
        debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
        if let Err(e) = fs::copy(&bc_out, &obj_out) {
            cgcx.handler.err(&format!("failed to copy bitcode to object file: {}", e));
        }
    }

    if rm_bc {
        debug!("removing_bitcode {:?}", bc_out);
        if let Err(e) = fs::remove_file(&bc_out) {
            cgcx.handler.err(&format!("failed to remove bitcode: {}", e));
        }
    }

    llvm::LLVMDisposeModule(llmod);
    llvm::LLVMContextDispose(llcx);
    llvm::LLVMRustDisposeTargetMachine(tm);
}

pub fn run_passes(sess: &Session,
                  trans: &CrateTranslation,
                  output_types: &HashMap<OutputType, Option<PathBuf>>,
                  crate_output: &OutputFilenames) {
    // It's possible that we have `codegen_units > 1` but only one item in
    // `trans.modules`.  We could theoretically proceed and do LTO in that
    // case, but it would be confusing to have the validity of
    // `-Z lto -C codegen-units=2` depend on details of the crate being
    // compiled, so we complain regardless.
    if sess.lto() && sess.opts.cg.codegen_units > 1 {
        // This case is impossible to handle because LTO expects to be able
        // to combine the entire crate and all its dependencies into a
        // single compilation unit, but each codegen unit is in a separate
        // LLVM context, so they can't easily be combined.
        sess.fatal("can't perform LTO when using multiple codegen units");
    }

    // Sanity check
    assert!(trans.modules.len() == sess.opts.cg.codegen_units ||
            sess.opts.debugging_opts.incremental.is_some());

    let tm = create_target_machine(sess);

    // Figure out what we actually need to build.

    let mut modules_config = ModuleConfig::new(tm, sess.opts.cg.passes.clone());
    let mut metadata_config = ModuleConfig::new(tm, vec!());

    modules_config.opt_level = Some(get_llvm_opt_level(sess.opts.optimize));
    modules_config.opt_size = Some(get_llvm_opt_size(sess.opts.optimize));

    // Save all versions of the bytecode if we're saving our temporaries.
    if sess.opts.cg.save_temps {
        modules_config.emit_no_opt_bc = true;
        modules_config.emit_bc = true;
        modules_config.emit_lto_bc = true;
        metadata_config.emit_bc = true;
    }

    // Emit bitcode files for the crate if we're emitting an rlib.
    // Whenever an rlib is created, the bitcode is inserted into the
    // archive in order to allow LTO against it.
    let needs_crate_bitcode =
            sess.crate_types.borrow().contains(&config::CrateTypeRlib) &&
            sess.opts.output_types.contains_key(&OutputType::Exe);
    let needs_crate_object =
            sess.opts.output_types.contains_key(&OutputType::Exe);
    if needs_crate_bitcode {
        modules_config.emit_bc = true;
    }

    for output_type in output_types.keys() {
        match *output_type {
            OutputType::Bitcode => { modules_config.emit_bc = true; },
            OutputType::LlvmAssembly => { modules_config.emit_ir = true; },
            OutputType::Assembly => {
                modules_config.emit_asm = true;
                // If we're not using the LLVM assembler, this function
                // could be invoked specially with output_type_assembly, so
                // in this case we still want the metadata object file.
                if !sess.opts.output_types.contains_key(&OutputType::Assembly) {
                    metadata_config.emit_obj = true;
                }
            },
            OutputType::Object => { modules_config.emit_obj = true; },
            OutputType::Exe => {
                modules_config.emit_obj = true;
                metadata_config.emit_obj = true;
            },
            OutputType::DepInfo => {}
        }
    }

    modules_config.set_flags(sess, trans);
    metadata_config.set_flags(sess, trans);


    // Populate a buffer with a list of codegen threads.  Items are processed in
    // LIFO order, just because it's a tiny bit simpler that way.  (The order
    // doesn't actually matter.)
    let mut work_items = Vec::with_capacity(1 + trans.modules.len());

    {
        let work = build_work_item(sess,
                                   trans.metadata_module,
                                   metadata_config.clone(),
                                   crate_output.clone(),
                                   "metadata".to_string());
        work_items.push(work);
    }

    for (index, mtrans) in trans.modules.iter().enumerate() {
        let work = build_work_item(sess,
                                   *mtrans,
                                   modules_config.clone(),
                                   crate_output.clone(),
                                   format!("{}", index));
        work_items.push(work);
    }

    // Process the work items, optionally using worker threads.
    if sess.opts.cg.codegen_units == 1 {
        run_work_singlethreaded(sess, &trans.reachable, work_items);
    } else {
        run_work_multithreaded(sess, work_items, sess.opts.cg.codegen_units);
    }

    // All codegen is finished.
    unsafe {
        llvm::LLVMRustDisposeTargetMachine(tm);
    }

    // Produce final compile outputs.
    let copy_gracefully = |from: &Path, to: &Path| {
        if let Err(e) = fs::copy(from, to) {
            sess.err(&format!("could not copy {:?} to {:?}: {}", from, to, e));
        }
    };

    let copy_if_one_unit = |ext: &str,
                            output_type: OutputType,
                            keep_numbered: bool| {
        if sess.opts.cg.codegen_units == 1 {
            // 1) Only one codegen unit.  In this case it's no difficulty
            //    to copy `foo.0.x` to `foo.x`.
            copy_gracefully(&crate_output.with_extension(ext),
                            &crate_output.path(output_type));
            if !sess.opts.cg.save_temps && !keep_numbered {
                // The user just wants `foo.x`, not `foo.0.x`.
                remove(sess, &crate_output.with_extension(ext));
            }
        } else if crate_output.outputs.contains_key(&output_type) {
            // 2) Multiple codegen units, with `--emit foo=some_name`.  We have
            //    no good solution for this case, so warn the user.
            sess.warn(&format!("ignoring emit path because multiple .{} files \
                                were produced", ext));
        } else if crate_output.single_output_file.is_some() {
            // 3) Multiple codegen units, with `-o some_name`.  We have
            //    no good solution for this case, so warn the user.
            sess.warn(&format!("ignoring -o because multiple .{} files \
                                were produced", ext));
        } else {
            // 4) Multiple codegen units, but no explicit name.  We
            //    just leave the `foo.0.x` files in place.
            // (We don't have to do any work in this case.)
        }
    };

    // Flag to indicate whether the user explicitly requested bitcode.
    // Otherwise, we produced it only as a temporary output, and will need
    // to get rid of it.
    let mut user_wants_bitcode = false;
    let mut user_wants_objects = false;
    for output_type in output_types.keys() {
        match *output_type {
            OutputType::Bitcode => {
                user_wants_bitcode = true;
                // Copy to .bc, but always keep the .0.bc.  There is a later
                // check to figure out if we should delete .0.bc files, or keep
                // them for making an rlib.
                copy_if_one_unit("0.bc", OutputType::Bitcode, true);
            }
            OutputType::LlvmAssembly => {
                copy_if_one_unit("0.ll", OutputType::LlvmAssembly, false);
            }
            OutputType::Assembly => {
                copy_if_one_unit("0.s", OutputType::Assembly, false);
            }
            OutputType::Object => {
                user_wants_objects = true;
                copy_if_one_unit("0.o", OutputType::Object, true);
            }
            OutputType::Exe |
            OutputType::DepInfo => {}
        }
    }
    let user_wants_bitcode = user_wants_bitcode;

    // Clean up unwanted temporary files.

    // We create the following files by default:
    //  - crate.0.bc
    //  - crate.0.o
    //  - crate.metadata.bc
    //  - crate.metadata.o
    //  - crate.o (linked from crate.##.o)
    //  - crate.bc (copied from crate.0.bc)
    // We may create additional files if requested by the user (through
    // `-C save-temps` or `--emit=` flags).

    if !sess.opts.cg.save_temps {
        // Remove the temporary .0.o objects.  If the user didn't
        // explicitly request bitcode (with --emit=bc), and the bitcode is not
        // needed for building an rlib, then we must remove .0.bc as well.

        // Specific rules for keeping .0.bc:
        //  - If we're building an rlib (`needs_crate_bitcode`), then keep
        //    it.
        //  - If the user requested bitcode (`user_wants_bitcode`), and
        //    codegen_units > 1, then keep it.
        //  - If the user requested bitcode but codegen_units == 1, then we
        //    can toss .0.bc because we copied it to .bc earlier.
        //  - If we're not building an rlib and the user didn't request
        //    bitcode, then delete .0.bc.
        // If you change how this works, also update back::link::link_rlib,
        // where .0.bc files are (maybe) deleted after making an rlib.
        let keep_numbered_bitcode = needs_crate_bitcode ||
                (user_wants_bitcode && sess.opts.cg.codegen_units > 1);

        let keep_numbered_objects = needs_crate_object ||
                (user_wants_objects && sess.opts.cg.codegen_units > 1);

        for i in 0..trans.modules.len() {
            if modules_config.emit_obj && !keep_numbered_objects {
                let ext = format!("{}.o", i);
                remove(sess, &crate_output.with_extension(&ext));
            }

            if modules_config.emit_bc && !keep_numbered_bitcode {
                let ext = format!("{}.bc", i);
                remove(sess, &crate_output.with_extension(&ext));
            }
        }

        if metadata_config.emit_bc && !user_wants_bitcode {
            remove(sess, &crate_output.with_extension("metadata.bc"));
        }
    }

    // We leave the following files around by default:
    //  - crate.o
    //  - crate.metadata.o
    //  - crate.bc
    // These are used in linking steps and will be cleaned up afterward.

    // FIXME: time_llvm_passes support - does this use a global context or
    // something?
    if sess.opts.cg.codegen_units == 1 && sess.time_llvm_passes() {
        unsafe { llvm::LLVMRustPrintPassTimings(); }
    }
}

struct WorkItem {
    mtrans: ModuleTranslation,
    config: ModuleConfig,
    output_names: OutputFilenames,
    name_extra: String
}

fn build_work_item(sess: &Session,
                   mtrans: ModuleTranslation,
                   config: ModuleConfig,
                   output_names: OutputFilenames,
                   name_extra: String)
                   -> WorkItem
{
    let mut config = config;
    config.tm = create_target_machine(sess);
    WorkItem { mtrans: mtrans, config: config, output_names: output_names,
               name_extra: name_extra }
}

fn execute_work_item(cgcx: &CodegenContext,
                     work_item: WorkItem) {
    unsafe {
        optimize_and_codegen(cgcx, work_item.mtrans, work_item.config,
                             work_item.name_extra, work_item.output_names);
    }
}

fn run_work_singlethreaded(sess: &Session,
                           reachable: &[String],
                           work_items: Vec<WorkItem>) {
    let cgcx = CodegenContext::new_with_session(sess, reachable);

    // Since we're running single-threaded, we can pass the session to
    // the proc, allowing `optimize_and_codegen` to perform LTO.
    for work in work_items.into_iter().rev() {
        execute_work_item(&cgcx, work);
    }
}

fn run_work_multithreaded(sess: &Session,
                          work_items: Vec<WorkItem>,
                          num_workers: usize) {
    // Run some workers to process the work items.
    let work_items_arc = Arc::new(Mutex::new(work_items));
    let mut diag_emitter = SharedEmitter::new();
    let mut futures = Vec::with_capacity(num_workers);

    for i in 0..num_workers {
        let work_items_arc = work_items_arc.clone();
        let diag_emitter = diag_emitter.clone();
        let plugin_passes = sess.plugin_llvm_passes.borrow().clone();
        let remark = sess.opts.cg.remark.clone();

        let (tx, rx) = channel();
        let mut tx = Some(tx);
        futures.push(rx);

        thread::Builder::new().name(format!("codegen-{}", i)).spawn(move || {
            let diag_handler = Handler::with_emitter(true, false, box diag_emitter);

            // Must construct cgcx inside the proc because it has non-Send
            // fields.
            let cgcx = CodegenContext {
                lto_ctxt: None,
                handler: &diag_handler,
                plugin_passes: plugin_passes,
                remark: remark,
                worker: i,
            };

            loop {
                // Avoid holding the lock for the entire duration of the match.
                let maybe_work = work_items_arc.lock().unwrap().pop();
                match maybe_work {
                    Some(work) => {
                        execute_work_item(&cgcx, work);

                        // Make sure to fail the worker so the main thread can
                        // tell that there were errors.
                        cgcx.handler.abort_if_errors();
                    }
                    None => break,
                }
            }

            tx.take().unwrap().send(()).unwrap();
        }).unwrap();
    }

    let mut panicked = false;
    for rx in futures {
        match rx.recv() {
            Ok(()) => {},
            Err(_) => {
                panicked = true;
            },
        }
        // Display any new diagnostics.
        diag_emitter.dump(sess.diagnostic());
    }
    if panicked {
        sess.fatal("aborting due to worker thread panic");
    }
}

pub fn run_assembler(sess: &Session, outputs: &OutputFilenames) {
    let (pname, mut cmd) = get_linker(sess);

    cmd.arg("-c").arg("-o").arg(&outputs.path(OutputType::Object))
                           .arg(&outputs.temp_path(OutputType::Assembly));
    debug!("{:?}", cmd);

    match cmd.output() {
        Ok(prog) => {
            if !prog.status.success() {
                let mut note = prog.stderr.clone();
                note.extend_from_slice(&prog.stdout);

                sess.struct_err(&format!("linking with `{}` failed: {}",
                                         pname,
                                         prog.status))
                    .note(&format!("{:?}", &cmd))
                    .note(str::from_utf8(&note[..]).unwrap())
                    .emit();
                sess.abort_if_errors();
            }
        },
        Err(e) => {
            sess.err(&format!("could not exec the linker `{}`: {}", pname, e));
            sess.abort_if_errors();
        }
    }
}

pub unsafe fn with_llvm_pmb(llmod: ModuleRef,
                            config: &ModuleConfig,
                            f: &mut FnMut(llvm::PassManagerBuilderRef)) {
    // Create the PassManagerBuilder for LLVM. We configure it with
    // reasonable defaults and prepare it to actually populate the pass
    // manager.
    let builder = llvm::LLVMPassManagerBuilderCreate();
    let opt_level = config.opt_level.unwrap_or(llvm::CodeGenLevelNone);
    let opt_size = config.opt_size.unwrap_or(llvm::CodeGenOptSizeNone);
    let inline_threshold = config.inline_threshold;

    llvm::LLVMRustConfigurePassManagerBuilder(builder, opt_level,
                                              config.merge_functions,
                                              config.vectorize_slp,
                                              config.vectorize_loop);
    llvm::LLVMPassManagerBuilderSetSizeLevel(builder, opt_size as u32);

    if opt_size != llvm::CodeGenOptSizeNone {
        llvm::LLVMPassManagerBuilderSetDisableUnrollLoops(builder, 1);
    }

    llvm::LLVMRustAddBuilderLibraryInfo(builder, llmod, config.no_builtins);

    // Here we match what clang does (kinda). For O0 we only inline
    // always-inline functions (but don't add lifetime intrinsics), at O1 we
    // inline with lifetime intrinsics, and O2+ we add an inliner with a
    // thresholds copied from clang.
    match (opt_level, opt_size, inline_threshold) {
        (_, _, Some(t)) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, t as u32);
        }
        (llvm::CodeGenLevelAggressive, _, _) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 275);
        }
        (_, llvm::CodeGenOptSizeDefault, _) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 75);
        }
        (_, llvm::CodeGenOptSizeAggressive, _) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 25);
        }
        (llvm::CodeGenLevelNone, _, _) => {
            llvm::LLVMRustAddAlwaysInlinePass(builder, false);
        }
        (llvm::CodeGenLevelLess, _, _) => {
            llvm::LLVMRustAddAlwaysInlinePass(builder, true);
        }
        (llvm::CodeGenLevelDefault, _, _) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 225);
        }
    }

    f(builder);
    llvm::LLVMPassManagerBuilderDispose(builder);
}