1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use build::{BlockAnd, BlockAndExtension, Builder};
use build::scope::LoopScope;
use hair::*;
use rustc::middle::region::CodeExtent;
use rustc::mir::repr::*;
use syntax::codemap::Span;

impl<'a, 'gcx, 'tcx> Builder<'a, 'gcx, 'tcx> {

    pub fn stmt_expr(&mut self, mut block: BasicBlock, expr: Expr<'tcx>) -> BlockAnd<()> {
        let this = self;
        let expr_span = expr.span;
        let scope_id = this.innermost_scope_id();
        // Handle a number of expressions that don't need a destination at all. This
        // avoids needing a mountain of temporary `()` variables.
        match expr.kind {
            ExprKind::Scope { extent, value } => {
                let value = this.hir.mirror(value);
                this.in_scope(extent, block, |this, _| this.stmt_expr(block, value))
            }
            ExprKind::Assign { lhs, rhs } => {
                let lhs = this.hir.mirror(lhs);
                let rhs = this.hir.mirror(rhs);
                let scope_id = this.innermost_scope_id();
                let lhs_span = lhs.span;

                let lhs_ty = lhs.ty;
                let rhs_ty = rhs.ty;

                let lhs_needs_drop = this.hir.needs_drop(lhs_ty);
                let rhs_needs_drop = this.hir.needs_drop(rhs_ty);

                // Note: we evaluate assignments right-to-left. This
                // is better for borrowck interaction with overloaded
                // operators like x[j] = x[i].

                // Generate better code for things that don't need to be
                // dropped.
                let rhs = if lhs_needs_drop || rhs_needs_drop {
                    let op = unpack!(block = this.as_operand(block, rhs));
                    Rvalue::Use(op)
                } else {
                    unpack!(block = this.as_rvalue(block, rhs))
                };

                let lhs = unpack!(block = this.as_lvalue(block, lhs));
                unpack!(block = this.build_drop(block, lhs_span, lhs.clone(), lhs_ty));
                this.cfg.push_assign(block, scope_id, expr_span, &lhs, rhs);
                block.unit()
            }
            ExprKind::AssignOp { op, lhs, rhs } => {
                // FIXME(#28160) there is an interesting semantics
                // question raised here -- should we "freeze" the
                // value of the lhs here?  I'm inclined to think not,
                // since it seems closer to the semantics of the
                // overloaded version, which takes `&mut self`.  This
                // only affects weird things like `x += {x += 1; x}`
                // -- is that equal to `x + (x + 1)` or `2*(x+1)`?

                // As above, RTL.
                let rhs = unpack!(block = this.as_operand(block, rhs));
                let lhs = unpack!(block = this.as_lvalue(block, lhs));

                // we don't have to drop prior contents or anything
                // because AssignOp is only legal for Copy types
                // (overloaded ops should be desugared into a call).
                this.cfg.push_assign(block, scope_id, expr_span, &lhs,
                                     Rvalue::BinaryOp(op,
                                                      Operand::Consume(lhs.clone()),
                                                      rhs));

                block.unit()
            }
            ExprKind::Continue { label } => {
                this.break_or_continue(expr_span, label, block,
                                       |loop_scope| loop_scope.continue_block)
            }
            ExprKind::Break { label } => {
                this.break_or_continue(expr_span, label, block, |loop_scope| {
                    loop_scope.might_break = true;
                    loop_scope.break_block
                })
            }
            ExprKind::Return { value } => {
                block = match value {
                    Some(value) => unpack!(this.into(&Lvalue::ReturnPointer, block, value)),
                    None => {
                        this.cfg.push_assign_unit(block, scope_id,
                                                  expr_span, &Lvalue::ReturnPointer);
                        block
                    }
                };
                let extent = this.extent_of_return_scope();
                let return_block = this.return_block();
                this.exit_scope(expr_span, extent, block, return_block);
                this.cfg.start_new_block().unit()
            }
            _ => {
                let expr_span = expr.span;
                let expr_ty = expr.ty;
                let temp = this.temp(expr.ty.clone());
                unpack!(block = this.into(&temp, block, expr));
                unpack!(block = this.build_drop(block, expr_span, temp, expr_ty));
                block.unit()
            }
        }
    }

    fn break_or_continue<F>(&mut self,
                            span: Span,
                            label: Option<CodeExtent>,
                            block: BasicBlock,
                            exit_selector: F)
                            -> BlockAnd<()>
        where F: FnOnce(&mut LoopScope) -> BasicBlock
    {
        let (exit_block, extent) = {
            let loop_scope = self.find_loop_scope(span, label);
            (exit_selector(loop_scope), loop_scope.extent)
        };
        self.exit_scope(span, extent, block, exit_block);
        self.cfg.start_new_block().unit()
    }

}