1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! See README.md

pub use self::Constraint::*;
pub use self::Verify::*;
pub use self::UndoLogEntry::*;
pub use self::CombineMapType::*;
pub use self::RegionResolutionError::*;
pub use self::VarValue::*;

use super::{RegionVariableOrigin, SubregionOrigin, MiscVariable};
use super::unify_key;

use rustc_data_structures::graph::{self, Direction, NodeIndex, OUTGOING};
use rustc_data_structures::unify::{self, UnificationTable};
use middle::free_region::FreeRegionMap;
use ty::{self, Ty, TyCtxt};
use ty::{BoundRegion, Region, RegionVid};
use ty::{ReEmpty, ReStatic, ReFree, ReEarlyBound};
use ty::{ReLateBound, ReScope, ReVar, ReSkolemized, BrFresh};
use util::common::indenter;
use util::nodemap::{FnvHashMap, FnvHashSet};

use std::cell::{Cell, RefCell};
use std::cmp::Ordering::{self, Less, Greater, Equal};
use std::fmt;
use std::u32;
use syntax::ast;

mod graphviz;

// A constraint that influences the inference process.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum Constraint {
    // One region variable is subregion of another
    ConstrainVarSubVar(RegionVid, RegionVid),

    // Concrete region is subregion of region variable
    ConstrainRegSubVar(Region, RegionVid),

    // Region variable is subregion of concrete region
    //
    // FIXME(#29436) -- should be remove in favor of a Verify
    ConstrainVarSubReg(RegionVid, Region),
}

// Something we have to verify after region inference is done, but
// which does not directly influence the inference process
pub enum Verify<'tcx> {
    // VerifyRegSubReg(a, b): Verify that `a <= b`. Neither `a` nor
    // `b` are inference variables.
    VerifyRegSubReg(SubregionOrigin<'tcx>, Region, Region),

    // VerifyGenericBound(T, _, R, RS): The parameter type `T` (or
    // associated type) must outlive the region `R`. `T` is known to
    // outlive `RS`. Therefore verify that `R <= RS[i]` for some
    // `i`. Inference variables may be involved (but this verification
    // step doesn't influence inference).
    VerifyGenericBound(GenericKind<'tcx>, SubregionOrigin<'tcx>, Region, VerifyBound),
}

#[derive(Copy, Clone, PartialEq, Eq)]
pub enum GenericKind<'tcx> {
    Param(ty::ParamTy),
    Projection(ty::ProjectionTy<'tcx>),
}

// When we introduce a verification step, we wish to test that a
// particular region (let's call it `'min`) meets some bound.
// The bound is described the by the following grammar:
#[derive(Debug)]
pub enum VerifyBound {
    // B = exists {R} --> some 'r in {R} must outlive 'min
    //
    // Put another way, the subject value is known to outlive all
    // regions in {R}, so if any of those outlives 'min, then the
    // bound is met.
    AnyRegion(Vec<Region>),

    // B = forall {R} --> all 'r in {R} must outlive 'min
    //
    // Put another way, the subject value is known to outlive some
    // region in {R}, so if all of those outlives 'min, then the bound
    // is met.
    AllRegions(Vec<Region>),

    // B = exists {B} --> 'min must meet some bound b in {B}
    AnyBound(Vec<VerifyBound>),

    // B = forall {B} --> 'min must meet all bounds b in {B}
    AllBounds(Vec<VerifyBound>),
}

#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct TwoRegions {
    a: Region,
    b: Region,
}

#[derive(Copy, Clone, PartialEq)]
pub enum UndoLogEntry {
    OpenSnapshot,
    CommitedSnapshot,
    AddVar(RegionVid),
    AddConstraint(Constraint),
    AddVerify(usize),
    AddGiven(ty::FreeRegion, ty::RegionVid),
    AddCombination(CombineMapType, TwoRegions),
}

#[derive(Copy, Clone, PartialEq)]
pub enum CombineMapType {
    Lub,
    Glb,
}

#[derive(Clone, Debug)]
pub enum RegionResolutionError<'tcx> {
    /// `ConcreteFailure(o, a, b)`:
    ///
    /// `o` requires that `a <= b`, but this does not hold
    ConcreteFailure(SubregionOrigin<'tcx>, Region, Region),

    /// `GenericBoundFailure(p, s, a)
    ///
    /// The parameter/associated-type `p` must be known to outlive the lifetime
    /// `a` (but none of the known bounds are sufficient).
    GenericBoundFailure(SubregionOrigin<'tcx>, GenericKind<'tcx>, Region),

    /// `SubSupConflict(v, sub_origin, sub_r, sup_origin, sup_r)`:
    ///
    /// Could not infer a value for `v` because `sub_r <= v` (due to
    /// `sub_origin`) but `v <= sup_r` (due to `sup_origin`) and
    /// `sub_r <= sup_r` does not hold.
    SubSupConflict(RegionVariableOrigin,
                   SubregionOrigin<'tcx>,
                   Region,
                   SubregionOrigin<'tcx>,
                   Region),

    /// For subsets of `ConcreteFailure` and `SubSupConflict`, we can derive
    /// more specific errors message by suggesting to the user where they
    /// should put a lifetime. In those cases we process and put those errors
    /// into `ProcessedErrors` before we do any reporting.
    ProcessedErrors(Vec<ProcessedErrorOrigin<'tcx>>,
                    Vec<SameRegions>),
}

#[derive(Clone, Debug)]
pub enum ProcessedErrorOrigin<'tcx> {
    ConcreteFailure(SubregionOrigin<'tcx>, Region, Region),
    VariableFailure(RegionVariableOrigin),
}

/// SameRegions is used to group regions that we think are the same and would
/// like to indicate so to the user.
/// For example, the following function
/// ```
/// struct Foo { bar: i32 }
/// fn foo2<'a, 'b>(x: &'a Foo) -> &'b i32 {
///    &x.bar
/// }
/// ```
/// would report an error because we expect 'a and 'b to match, and so we group
/// 'a and 'b together inside a SameRegions struct
#[derive(Clone, Debug)]
pub struct SameRegions {
    pub scope_id: ast::NodeId,
    pub regions: Vec<BoundRegion>,
}

impl SameRegions {
    pub fn contains(&self, other: &BoundRegion) -> bool {
        self.regions.contains(other)
    }

    pub fn push(&mut self, other: BoundRegion) {
        self.regions.push(other);
    }
}

pub type CombineMap = FnvHashMap<TwoRegions, RegionVid>;

pub struct RegionVarBindings<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
    tcx: TyCtxt<'a, 'gcx, 'tcx>,
    var_origins: RefCell<Vec<RegionVariableOrigin>>,

    // Constraints of the form `A <= B` introduced by the region
    // checker.  Here at least one of `A` and `B` must be a region
    // variable.
    constraints: RefCell<FnvHashMap<Constraint, SubregionOrigin<'tcx>>>,

    // A "verify" is something that we need to verify after inference is
    // done, but which does not directly affect inference in any way.
    //
    // An example is a `A <= B` where neither `A` nor `B` are
    // inference variables.
    verifys: RefCell<Vec<Verify<'tcx>>>,

    // A "given" is a relationship that is known to hold. In particular,
    // we often know from closure fn signatures that a particular free
    // region must be a subregion of a region variable:
    //
    //    foo.iter().filter(<'a> |x: &'a &'b T| ...)
    //
    // In situations like this, `'b` is in fact a region variable
    // introduced by the call to `iter()`, and `'a` is a bound region
    // on the closure (as indicated by the `<'a>` prefix). If we are
    // naive, we wind up inferring that `'b` must be `'static`,
    // because we require that it be greater than `'a` and we do not
    // know what `'a` is precisely.
    //
    // This hashmap is used to avoid that naive scenario. Basically we
    // record the fact that `'a <= 'b` is implied by the fn signature,
    // and then ignore the constraint when solving equations. This is
    // a bit of a hack but seems to work.
    givens: RefCell<FnvHashSet<(ty::FreeRegion, ty::RegionVid)>>,

    lubs: RefCell<CombineMap>,
    glbs: RefCell<CombineMap>,
    skolemization_count: Cell<u32>,
    bound_count: Cell<u32>,

    // The undo log records actions that might later be undone.
    //
    // Note: when the undo_log is empty, we are not actively
    // snapshotting. When the `start_snapshot()` method is called, we
    // push an OpenSnapshot entry onto the list to indicate that we
    // are now actively snapshotting. The reason for this is that
    // otherwise we end up adding entries for things like the lower
    // bound on a variable and so forth, which can never be rolled
    // back.
    undo_log: RefCell<Vec<UndoLogEntry>>,
    unification_table: RefCell<UnificationTable<ty::RegionVid>>,

    // This contains the results of inference.  It begins as an empty
    // option and only acquires a value after inference is complete.
    values: RefCell<Option<Vec<VarValue>>>,
}

pub struct RegionSnapshot {
    length: usize,
    region_snapshot: unify::Snapshot<ty::RegionVid>,
    skolemization_count: u32,
}

impl<'a, 'gcx, 'tcx> RegionVarBindings<'a, 'gcx, 'tcx> {
    pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> RegionVarBindings<'a, 'gcx, 'tcx> {
        RegionVarBindings {
            tcx: tcx,
            var_origins: RefCell::new(Vec::new()),
            values: RefCell::new(None),
            constraints: RefCell::new(FnvHashMap()),
            verifys: RefCell::new(Vec::new()),
            givens: RefCell::new(FnvHashSet()),
            lubs: RefCell::new(FnvHashMap()),
            glbs: RefCell::new(FnvHashMap()),
            skolemization_count: Cell::new(0),
            bound_count: Cell::new(0),
            undo_log: RefCell::new(Vec::new()),
            unification_table: RefCell::new(UnificationTable::new()),
        }
    }

    fn in_snapshot(&self) -> bool {
        !self.undo_log.borrow().is_empty()
    }

    pub fn start_snapshot(&self) -> RegionSnapshot {
        let length = self.undo_log.borrow().len();
        debug!("RegionVarBindings: start_snapshot({})", length);
        self.undo_log.borrow_mut().push(OpenSnapshot);
        RegionSnapshot {
            length: length,
            region_snapshot: self.unification_table.borrow_mut().snapshot(),
            skolemization_count: self.skolemization_count.get(),
        }
    }

    pub fn commit(&self, snapshot: RegionSnapshot) {
        debug!("RegionVarBindings: commit({})", snapshot.length);
        assert!(self.undo_log.borrow().len() > snapshot.length);
        assert!((*self.undo_log.borrow())[snapshot.length] == OpenSnapshot);

        let mut undo_log = self.undo_log.borrow_mut();
        if snapshot.length == 0 {
            undo_log.truncate(0);
        } else {
            (*undo_log)[snapshot.length] = CommitedSnapshot;
        }
        self.skolemization_count.set(snapshot.skolemization_count);
        self.unification_table.borrow_mut().commit(snapshot.region_snapshot);
    }

    pub fn rollback_to(&self, snapshot: RegionSnapshot) {
        debug!("RegionVarBindings: rollback_to({:?})", snapshot);
        let mut undo_log = self.undo_log.borrow_mut();
        assert!(undo_log.len() > snapshot.length);
        assert!((*undo_log)[snapshot.length] == OpenSnapshot);
        while undo_log.len() > snapshot.length + 1 {
            match undo_log.pop().unwrap() {
                OpenSnapshot => {
                    bug!("Failure to observe stack discipline");
                }
                CommitedSnapshot => {}
                AddVar(vid) => {
                    let mut var_origins = self.var_origins.borrow_mut();
                    var_origins.pop().unwrap();
                    assert_eq!(var_origins.len(), vid.index as usize);
                }
                AddConstraint(ref constraint) => {
                    self.constraints.borrow_mut().remove(constraint);
                }
                AddVerify(index) => {
                    self.verifys.borrow_mut().pop();
                    assert_eq!(self.verifys.borrow().len(), index);
                }
                AddGiven(sub, sup) => {
                    self.givens.borrow_mut().remove(&(sub, sup));
                }
                AddCombination(Glb, ref regions) => {
                    self.glbs.borrow_mut().remove(regions);
                }
                AddCombination(Lub, ref regions) => {
                    self.lubs.borrow_mut().remove(regions);
                }
            }
        }
        let c = undo_log.pop().unwrap();
        assert!(c == OpenSnapshot);
        self.skolemization_count.set(snapshot.skolemization_count);
        self.unification_table.borrow_mut()
            .rollback_to(snapshot.region_snapshot);
    }

    pub fn num_vars(&self) -> u32 {
        let len = self.var_origins.borrow().len();
        // enforce no overflow
        assert!(len as u32 as usize == len);
        len as u32
    }

    pub fn new_region_var(&self, origin: RegionVariableOrigin) -> RegionVid {
        let vid = RegionVid { index: self.num_vars() };
        self.var_origins.borrow_mut().push(origin.clone());

        let u_vid = self.unification_table.borrow_mut().new_key(
            unify_key::RegionVidKey { min_vid: vid }
            );
        assert_eq!(vid, u_vid);
        if self.in_snapshot() {
            self.undo_log.borrow_mut().push(AddVar(vid));
        }
        debug!("created new region variable {:?} with origin {:?}",
               vid,
               origin);
        return vid;
    }

    /// Creates a new skolemized region. Skolemized regions are fresh
    /// regions used when performing higher-ranked computations. They
    /// must be used in a very particular way and are never supposed
    /// to "escape" out into error messages or the code at large.
    ///
    /// The idea is to always create a snapshot. Skolemized regions
    /// can be created in the context of this snapshot, but once the
    /// snapshot is committed or rolled back, their numbers will be
    /// recycled, so you must be finished with them. See the extensive
    /// comments in `higher_ranked.rs` to see how it works (in
    /// particular, the subtyping comparison).
    ///
    /// The `snapshot` argument to this function is not really used;
    /// it's just there to make it explicit which snapshot bounds the
    /// skolemized region that results.
    pub fn new_skolemized(&self, br: ty::BoundRegion, snapshot: &RegionSnapshot) -> Region {
        assert!(self.in_snapshot());
        assert!(self.undo_log.borrow()[snapshot.length] == OpenSnapshot);

        let sc = self.skolemization_count.get();
        self.skolemization_count.set(sc + 1);
        ReSkolemized(ty::SkolemizedRegionVid { index: sc }, br)
    }

    pub fn new_bound(&self, debruijn: ty::DebruijnIndex) -> Region {
        // Creates a fresh bound variable for use in GLB computations.
        // See discussion of GLB computation in the large comment at
        // the top of this file for more details.
        //
        // This computation is potentially wrong in the face of
        // rollover.  It's conceivable, if unlikely, that one might
        // wind up with accidental capture for nested functions in
        // that case, if the outer function had bound regions created
        // a very long time before and the inner function somehow
        // wound up rolling over such that supposedly fresh
        // identifiers were in fact shadowed. For now, we just assert
        // that there is no rollover -- eventually we should try to be
        // robust against this possibility, either by checking the set
        // of bound identifiers that appear in a given expression and
        // ensure that we generate one that is distinct, or by
        // changing the representation of bound regions in a fn
        // declaration

        let sc = self.bound_count.get();
        self.bound_count.set(sc + 1);

        if sc >= self.bound_count.get() {
            bug!("rollover in RegionInference new_bound()");
        }

        ReLateBound(debruijn, BrFresh(sc))
    }

    fn values_are_none(&self) -> bool {
        self.values.borrow().is_none()
    }

    fn add_constraint(&self, constraint: Constraint, origin: SubregionOrigin<'tcx>) {
        // cannot add constraints once regions are resolved
        assert!(self.values_are_none());

        debug!("RegionVarBindings: add_constraint({:?})", constraint);

        if self.constraints.borrow_mut().insert(constraint, origin).is_none() {
            if self.in_snapshot() {
                self.undo_log.borrow_mut().push(AddConstraint(constraint));
            }
        }
    }

    fn add_verify(&self, verify: Verify<'tcx>) {
        // cannot add verifys once regions are resolved
        assert!(self.values_are_none());

        debug!("RegionVarBindings: add_verify({:?})", verify);

        // skip no-op cases known to be satisfied
        match verify {
            VerifyGenericBound(_, _, _, VerifyBound::AllBounds(ref bs)) if bs.len() == 0 => {
                return;
            }
            _ => {}
        }

        let mut verifys = self.verifys.borrow_mut();
        let index = verifys.len();
        verifys.push(verify);
        if self.in_snapshot() {
            self.undo_log.borrow_mut().push(AddVerify(index));
        }
    }

    pub fn add_given(&self, sub: ty::FreeRegion, sup: ty::RegionVid) {
        // cannot add givens once regions are resolved
        assert!(self.values_are_none());

        let mut givens = self.givens.borrow_mut();
        if givens.insert((sub, sup)) {
            debug!("add_given({:?} <= {:?})", sub, sup);

            self.undo_log.borrow_mut().push(AddGiven(sub, sup));
        }
    }

    pub fn make_eqregion(&self, origin: SubregionOrigin<'tcx>, sub: Region, sup: Region) {
        if sub != sup {
            // Eventually, it would be nice to add direct support for
            // equating regions.
            self.make_subregion(origin.clone(), sub, sup);
            self.make_subregion(origin, sup, sub);

            if let (ty::ReVar(sub), ty::ReVar(sup)) = (sub, sup) {
                self.unification_table.borrow_mut().union(sub, sup);
            }
        }
    }

    pub fn make_subregion(&self, origin: SubregionOrigin<'tcx>, sub: Region, sup: Region) {
        // cannot add constraints once regions are resolved
        assert!(self.values_are_none());

        debug!("RegionVarBindings: make_subregion({:?}, {:?}) due to {:?}",
               sub,
               sup,
               origin);

        match (sub, sup) {
            (ReEarlyBound(..), _) |
            (ReLateBound(..), _) |
            (_, ReEarlyBound(..)) |
            (_, ReLateBound(..)) => {
                span_bug!(origin.span(),
                          "cannot relate bound region: {:?} <= {:?}",
                          sub,
                          sup);
            }
            (_, ReStatic) => {
                // all regions are subregions of static, so we can ignore this
            }
            (ReVar(sub_id), ReVar(sup_id)) => {
                self.add_constraint(ConstrainVarSubVar(sub_id, sup_id), origin);
            }
            (r, ReVar(sup_id)) => {
                self.add_constraint(ConstrainRegSubVar(r, sup_id), origin);
            }
            (ReVar(sub_id), r) => {
                self.add_constraint(ConstrainVarSubReg(sub_id, r), origin);
            }
            _ => {
                self.add_verify(VerifyRegSubReg(origin, sub, sup));
            }
        }
    }

    /// See `Verify::VerifyGenericBound`
    pub fn verify_generic_bound(&self,
                                origin: SubregionOrigin<'tcx>,
                                kind: GenericKind<'tcx>,
                                sub: Region,
                                bound: VerifyBound) {
        self.add_verify(VerifyGenericBound(kind, origin, sub, bound));
    }

    pub fn lub_regions(&self, origin: SubregionOrigin<'tcx>, a: Region, b: Region) -> Region {
        // cannot add constraints once regions are resolved
        assert!(self.values_are_none());

        debug!("RegionVarBindings: lub_regions({:?}, {:?})", a, b);
        if a == ty::ReStatic || b == ty::ReStatic {
            ReStatic // nothing lives longer than static
        } else if a == b {
            a // LUB(a,a) = a
        } else {
            self.combine_vars(Lub, a, b, origin.clone(), |this, old_r, new_r| {
                this.make_subregion(origin.clone(), old_r, new_r)
            })
        }
    }

    pub fn glb_regions(&self, origin: SubregionOrigin<'tcx>, a: Region, b: Region) -> Region {
        // cannot add constraints once regions are resolved
        assert!(self.values_are_none());

        debug!("RegionVarBindings: glb_regions({:?}, {:?})", a, b);
        match (a, b) {
            (ReStatic, r) | (r, ReStatic) => {
                r // static lives longer than everything else
            }

            _ if a == b => {
                a // GLB(a,a) = a
            }

            _ => {
                self.combine_vars(Glb, a, b, origin.clone(), |this, old_r, new_r| {
                    this.make_subregion(origin.clone(), new_r, old_r)
                })
            }
        }
    }

    pub fn resolve_var(&self, rid: RegionVid) -> ty::Region {
        match *self.values.borrow() {
            None => {
                span_bug!((*self.var_origins.borrow())[rid.index as usize].span(),
                          "attempt to resolve region variable before values have \
                           been computed!")
            }
            Some(ref values) => {
                let r = lookup(values, rid);
                debug!("resolve_var({:?}) = {:?}", rid, r);
                r
            }
        }
    }

    pub fn opportunistic_resolve_var(&self, rid: RegionVid) -> ty::Region {
        ty::ReVar(self.unification_table.borrow_mut().find_value(rid).min_vid)
    }

    fn combine_map(&self, t: CombineMapType) -> &RefCell<CombineMap> {
        match t {
            Glb => &self.glbs,
            Lub => &self.lubs,
        }
    }

    pub fn combine_vars<F>(&self,
                           t: CombineMapType,
                           a: Region,
                           b: Region,
                           origin: SubregionOrigin<'tcx>,
                           mut relate: F)
                           -> Region
        where F: FnMut(&RegionVarBindings<'a, 'gcx, 'tcx>, Region, Region)
    {
        let vars = TwoRegions { a: a, b: b };
        match self.combine_map(t).borrow().get(&vars) {
            Some(&c) => {
                return ReVar(c);
            }
            None => {}
        }
        let c = self.new_region_var(MiscVariable(origin.span()));
        self.combine_map(t).borrow_mut().insert(vars, c);
        if self.in_snapshot() {
            self.undo_log.borrow_mut().push(AddCombination(t, vars));
        }
        relate(self, a, ReVar(c));
        relate(self, b, ReVar(c));
        debug!("combine_vars() c={:?}", c);
        ReVar(c)
    }

    pub fn vars_created_since_snapshot(&self, mark: &RegionSnapshot) -> Vec<RegionVid> {
        self.undo_log.borrow()[mark.length..]
            .iter()
            .filter_map(|&elt| {
                match elt {
                    AddVar(vid) => Some(vid),
                    _ => None,
                }
            })
            .collect()
    }

    /// Computes all regions that have been related to `r0` in any way since the mark `mark` was
    /// made---`r0` itself will be the first entry. This is used when checking whether skolemized
    /// regions are being improperly related to other regions.
    pub fn tainted(&self, mark: &RegionSnapshot, r0: Region) -> Vec<Region> {
        debug!("tainted(mark={:?}, r0={:?})", mark, r0);
        let _indenter = indenter();

        // `result_set` acts as a worklist: we explore all outgoing
        // edges and add any new regions we find to result_set.  This
        // is not a terribly efficient implementation.
        let mut result_set = vec![r0];
        let mut result_index = 0;
        while result_index < result_set.len() {
            // nb: can't use usize::range() here because result_set grows
            let r = result_set[result_index];
            debug!("result_index={}, r={:?}", result_index, r);

            for undo_entry in self.undo_log.borrow()[mark.length..].iter() {
                match undo_entry {
                    &AddConstraint(ConstrainVarSubVar(a, b)) => {
                        consider_adding_bidirectional_edges(&mut result_set, r, ReVar(a), ReVar(b));
                    }
                    &AddConstraint(ConstrainRegSubVar(a, b)) => {
                        consider_adding_bidirectional_edges(&mut result_set, r, a, ReVar(b));
                    }
                    &AddConstraint(ConstrainVarSubReg(a, b)) => {
                        consider_adding_bidirectional_edges(&mut result_set, r, ReVar(a), b);
                    }
                    &AddGiven(a, b) => {
                        consider_adding_bidirectional_edges(&mut result_set,
                                                            r,
                                                            ReFree(a),
                                                            ReVar(b));
                    }
                    &AddVerify(i) => {
                        match (*self.verifys.borrow())[i] {
                            VerifyRegSubReg(_, a, b) => {
                                consider_adding_bidirectional_edges(&mut result_set, r, a, b);
                            }
                            VerifyGenericBound(_, _, a, ref bound) => {
                                bound.for_each_region(&mut |b| {
                                    consider_adding_bidirectional_edges(&mut result_set, r, a, b)
                                });
                            }
                        }
                    }
                    &AddCombination(..) |
                    &AddVar(..) |
                    &OpenSnapshot |
                    &CommitedSnapshot => {}
                }
            }

            result_index += 1;
        }

        return result_set;

        fn consider_adding_bidirectional_edges(result_set: &mut Vec<Region>,
                                               r: Region,
                                               r1: Region,
                                               r2: Region) {
            consider_adding_directed_edge(result_set, r, r1, r2);
            consider_adding_directed_edge(result_set, r, r2, r1);
        }

        fn consider_adding_directed_edge(result_set: &mut Vec<Region>,
                                         r: Region,
                                         r1: Region,
                                         r2: Region) {
            if r == r1 {
                // Clearly, this is potentially inefficient.
                if !result_set.iter().any(|x| *x == r2) {
                    result_set.push(r2);
                }
            }
        }
    }

    /// This function performs the actual region resolution.  It must be
    /// called after all constraints have been added.  It performs a
    /// fixed-point iteration to find region values which satisfy all
    /// constraints, assuming such values can be found; if they cannot,
    /// errors are reported.
    pub fn resolve_regions(&self,
                           free_regions: &FreeRegionMap,
                           subject_node: ast::NodeId)
                           -> Vec<RegionResolutionError<'tcx>> {
        debug!("RegionVarBindings: resolve_regions()");
        let mut errors = vec![];
        let v = self.infer_variable_values(free_regions, &mut errors, subject_node);
        *self.values.borrow_mut() = Some(v);
        errors
    }

    fn lub_concrete_regions(&self, free_regions: &FreeRegionMap, a: Region, b: Region) -> Region {
        match (a, b) {
            (ReLateBound(..), _) |
            (_, ReLateBound(..)) |
            (ReEarlyBound(..), _) |
            (_, ReEarlyBound(..)) => {
                bug!("cannot relate bound region: LUB({:?}, {:?})", a, b);
            }

            (ReStatic, _) | (_, ReStatic) => {
                ReStatic // nothing lives longer than static
            }

            (ReEmpty, r) | (r, ReEmpty) => {
                r // everything lives longer than empty
            }

            (ReVar(v_id), _) | (_, ReVar(v_id)) => {
                span_bug!((*self.var_origins.borrow())[v_id.index as usize].span(),
                          "lub_concrete_regions invoked with non-concrete \
                           regions: {:?}, {:?}",
                          a,
                          b);
            }

            (ReFree(ref fr), ReScope(s_id)) |
            (ReScope(s_id), ReFree(ref fr)) => {
                let f = ReFree(*fr);
                // A "free" region can be interpreted as "some region
                // at least as big as the block fr.scope_id".  So, we can
                // reasonably compare free regions and scopes:
                let r_id = self.tcx.region_maps.nearest_common_ancestor(fr.scope, s_id);

                if r_id == fr.scope {
                    // if the free region's scope `fr.scope_id` is bigger than
                    // the scope region `s_id`, then the LUB is the free
                    // region itself:
                    f
                } else {
                    // otherwise, we don't know what the free region is,
                    // so we must conservatively say the LUB is static:
                    ReStatic
                }
            }

            (ReScope(a_id), ReScope(b_id)) => {
                // The region corresponding to an outer block is a
                // subtype of the region corresponding to an inner
                // block.
                ReScope(self.tcx.region_maps.nearest_common_ancestor(a_id, b_id))
            }

            (ReFree(a_fr), ReFree(b_fr)) => {
                free_regions.lub_free_regions(a_fr, b_fr)
            }

            // For these types, we cannot define any additional
            // relationship:
            (ReSkolemized(..), _) |
            (_, ReSkolemized(..)) => {
                if a == b {
                    a
                } else {
                    ReStatic
                }
            }
        }
    }
}

// ______________________________________________________________________

#[derive(Copy, Clone, Debug)]
pub enum VarValue {
    Value(Region),
    ErrorValue,
}

struct VarData {
    value: VarValue,
}

struct RegionAndOrigin<'tcx> {
    region: Region,
    origin: SubregionOrigin<'tcx>,
}

type RegionGraph = graph::Graph<(), Constraint>;

impl<'a, 'gcx, 'tcx> RegionVarBindings<'a, 'gcx, 'tcx> {
    fn infer_variable_values(&self,
                             free_regions: &FreeRegionMap,
                             errors: &mut Vec<RegionResolutionError<'tcx>>,
                             subject: ast::NodeId)
                             -> Vec<VarValue> {
        let mut var_data = self.construct_var_data();

        // Dorky hack to cause `dump_constraints` to only get called
        // if debug mode is enabled:
        debug!("----() End constraint listing (subject={}) {:?}---",
               subject,
               self.dump_constraints(subject));
        graphviz::maybe_print_constraints_for(self, subject);

        let graph = self.construct_graph();
        self.expand_givens(&graph);
        self.expansion(free_regions, &mut var_data);
        self.contraction(free_regions, &mut var_data);
        let values = self.extract_values_and_collect_conflicts(free_regions,
                                                               &var_data,
                                                               &graph,
                                                               errors);
        self.collect_concrete_region_errors(free_regions, &values, errors);
        values
    }

    fn construct_var_data(&self) -> Vec<VarData> {
        (0..self.num_vars() as usize)
            .map(|_| VarData { value: Value(ty::ReEmpty) })
            .collect()
    }

    fn dump_constraints(&self, subject: ast::NodeId) {
        debug!("----() Start constraint listing (subject={}) ()----",
               subject);
        for (idx, (constraint, _)) in self.constraints.borrow().iter().enumerate() {
            debug!("Constraint {} => {:?}", idx, constraint);
        }
    }

    fn expand_givens(&self, graph: &RegionGraph) {
        // Givens are a kind of horrible hack to account for
        // constraints like 'c <= '0 that are known to hold due to
        // closure signatures (see the comment above on the `givens`
        // field). They should go away. But until they do, the role
        // of this fn is to account for the transitive nature:
        //
        //     Given 'c <= '0
        //     and   '0 <= '1
        //     then  'c <= '1

        let mut givens = self.givens.borrow_mut();
        let seeds: Vec<_> = givens.iter().cloned().collect();
        for (fr, vid) in seeds {
            let seed_index = NodeIndex(vid.index as usize);
            for succ_index in graph.depth_traverse(seed_index, OUTGOING) {
                let succ_index = succ_index.0 as u32;
                if succ_index < self.num_vars() {
                    let succ_vid = RegionVid { index: succ_index };
                    givens.insert((fr, succ_vid));
                }
            }
        }
    }

    fn expansion(&self, free_regions: &FreeRegionMap, var_data: &mut [VarData]) {
        self.iterate_until_fixed_point("Expansion", |constraint| {
            debug!("expansion: constraint={:?} origin={:?}",
                   constraint,
                   self.constraints
                       .borrow()
                       .get(constraint)
                       .unwrap());
            match *constraint {
                ConstrainRegSubVar(a_region, b_vid) => {
                    let b_data = &mut var_data[b_vid.index as usize];
                    self.expand_node(free_regions, a_region, b_vid, b_data)
                }
                ConstrainVarSubVar(a_vid, b_vid) => {
                    match var_data[a_vid.index as usize].value {
                        ErrorValue => false,
                        Value(a_region) => {
                            let b_node = &mut var_data[b_vid.index as usize];
                            self.expand_node(free_regions, a_region, b_vid, b_node)
                        }
                    }
                }
                ConstrainVarSubReg(..) => {
                    // This is a contraction constraint.  Ignore it.
                    false
                }
            }
        })
    }

    fn expand_node(&self,
                   free_regions: &FreeRegionMap,
                   a_region: Region,
                   b_vid: RegionVid,
                   b_data: &mut VarData)
                   -> bool {
        debug!("expand_node({:?}, {:?} == {:?})",
               a_region,
               b_vid,
               b_data.value);

        // Check if this relationship is implied by a given.
        match a_region {
            ty::ReFree(fr) => {
                if self.givens.borrow().contains(&(fr, b_vid)) {
                    debug!("given");
                    return false;
                }
            }
            _ => {}
        }

        match b_data.value {
            Value(cur_region) => {
                let lub = self.lub_concrete_regions(free_regions, a_region, cur_region);
                if lub == cur_region {
                    return false;
                }

                debug!("Expanding value of {:?} from {:?} to {:?}",
                       b_vid,
                       cur_region,
                       lub);

                b_data.value = Value(lub);
                return true;
            }

            ErrorValue => {
                return false;
            }
        }
    }

    // FIXME(#29436) -- this fn would just go away if we removed ConstrainVarSubReg
    fn contraction(&self, free_regions: &FreeRegionMap, var_data: &mut [VarData]) {
        self.iterate_until_fixed_point("Contraction", |constraint| {
            debug!("contraction: constraint={:?} origin={:?}",
                   constraint,
                   self.constraints
                       .borrow()
                       .get(constraint)
                       .unwrap());
            match *constraint {
                ConstrainRegSubVar(..) |
                ConstrainVarSubVar(..) => {
                    // Expansion will ensure that these constraints hold. Ignore.
                }
                ConstrainVarSubReg(a_vid, b_region) => {
                    let a_data = &mut var_data[a_vid.index as usize];
                    debug!("contraction: {:?} == {:?}, {:?}",
                           a_vid,
                           a_data.value,
                           b_region);

                    let a_region = match a_data.value {
                        ErrorValue => return false,
                        Value(a_region) => a_region,
                    };

                    if !free_regions.is_subregion_of(self.tcx, a_region, b_region) {
                        debug!("Setting {:?} to ErrorValue: {:?} not subregion of {:?}",
                               a_vid,
                               a_region,
                               b_region);
                        a_data.value = ErrorValue;
                    }
                }
            }

            false
        })
    }

    fn collect_concrete_region_errors(&self,
                                      free_regions: &FreeRegionMap,
                                      values: &Vec<VarValue>,
                                      errors: &mut Vec<RegionResolutionError<'tcx>>) {
        let mut reg_reg_dups = FnvHashSet();
        for verify in self.verifys.borrow().iter() {
            match *verify {
                VerifyRegSubReg(ref origin, sub, sup) => {
                    if free_regions.is_subregion_of(self.tcx, sub, sup) {
                        continue;
                    }

                    if !reg_reg_dups.insert((sub, sup)) {
                        continue;
                    }

                    debug!("region inference error at {:?}: {:?} <= {:?} is not true",
                           origin,
                           sub,
                           sup);

                    errors.push(ConcreteFailure((*origin).clone(), sub, sup));
                }

                VerifyGenericBound(ref kind, ref origin, sub, ref bound) => {
                    let sub = normalize(values, sub);
                    if bound.is_met(self.tcx, free_regions, values, sub) {
                        continue;
                    }

                    debug!("region inference error at {:?}: verifying {:?} <= {:?}",
                           origin,
                           sub,
                           bound);

                    errors.push(GenericBoundFailure((*origin).clone(), kind.clone(), sub));
                }
            }
        }
    }

    fn extract_values_and_collect_conflicts(&self,
                                            free_regions: &FreeRegionMap,
                                            var_data: &[VarData],
                                            graph: &RegionGraph,
                                            errors: &mut Vec<RegionResolutionError<'tcx>>)
                                            -> Vec<VarValue> {
        debug!("extract_values_and_collect_conflicts()");

        // This is the best way that I have found to suppress
        // duplicate and related errors. Basically we keep a set of
        // flags for every node. Whenever an error occurs, we will
        // walk some portion of the graph looking to find pairs of
        // conflicting regions to report to the user. As we walk, we
        // trip the flags from false to true, and if we find that
        // we've already reported an error involving any particular
        // node we just stop and don't report the current error.  The
        // idea is to report errors that derive from independent
        // regions of the graph, but not those that derive from
        // overlapping locations.
        let mut dup_vec = vec![u32::MAX; self.num_vars() as usize];

        for idx in 0..self.num_vars() as usize {
            match var_data[idx].value {
                Value(_) => {
                    /* Inference successful */
                }
                ErrorValue => {
                    /* Inference impossible, this value contains
                       inconsistent constraints.

                       I think that in this case we should report an
                       error now---unlike the case above, we can't
                       wait to see whether the user needs the result
                       of this variable.  The reason is that the mere
                       existence of this variable implies that the
                       region graph is inconsistent, whether or not it
                       is used.

                       For example, we may have created a region
                       variable that is the GLB of two other regions
                       which do not have a GLB.  Even if that variable
                       is not used, it implies that those two regions
                       *should* have a GLB.

                       At least I think this is true. It may be that
                       the mere existence of a conflict in a region variable
                       that is not used is not a problem, so if this rule
                       starts to create problems we'll have to revisit
                       this portion of the code and think hard about it. =) */

                    let node_vid = RegionVid { index: idx as u32 };
                    self.collect_error_for_expanding_node(free_regions,
                                                          graph,
                                                          &mut dup_vec,
                                                          node_vid,
                                                          errors);
                }
            }
        }

        (0..self.num_vars() as usize).map(|idx| var_data[idx].value).collect()
    }

    fn construct_graph(&self) -> RegionGraph {
        let num_vars = self.num_vars();

        let constraints = self.constraints.borrow();

        let mut graph = graph::Graph::new();

        for _ in 0..num_vars {
            graph.add_node(());
        }

        // Issue #30438: two distinct dummy nodes, one for incoming
        // edges (dummy_source) and another for outgoing edges
        // (dummy_sink). In `dummy -> a -> b -> dummy`, using one
        // dummy node leads one to think (erroneously) there exists a
        // path from `b` to `a`. Two dummy nodes sidesteps the issue.
        let dummy_source = graph.add_node(());
        let dummy_sink = graph.add_node(());

        for (constraint, _) in constraints.iter() {
            match *constraint {
                ConstrainVarSubVar(a_id, b_id) => {
                    graph.add_edge(NodeIndex(a_id.index as usize),
                                   NodeIndex(b_id.index as usize),
                                   *constraint);
                }
                ConstrainRegSubVar(_, b_id) => {
                    graph.add_edge(dummy_source, NodeIndex(b_id.index as usize), *constraint);
                }
                ConstrainVarSubReg(a_id, _) => {
                    graph.add_edge(NodeIndex(a_id.index as usize), dummy_sink, *constraint);
                }
            }
        }

        return graph;
    }

    fn collect_error_for_expanding_node(&self,
                                        free_regions: &FreeRegionMap,
                                        graph: &RegionGraph,
                                        dup_vec: &mut [u32],
                                        node_idx: RegionVid,
                                        errors: &mut Vec<RegionResolutionError<'tcx>>) {
        // Errors in expanding nodes result from a lower-bound that is
        // not contained by an upper-bound.
        let (mut lower_bounds, lower_dup) = self.collect_concrete_regions(graph,
                                                                          node_idx,
                                                                          graph::INCOMING,
                                                                          dup_vec);
        let (mut upper_bounds, upper_dup) = self.collect_concrete_regions(graph,
                                                                          node_idx,
                                                                          graph::OUTGOING,
                                                                          dup_vec);

        if lower_dup || upper_dup {
            return;
        }

        // We place free regions first because we are special casing
        // SubSupConflict(ReFree, ReFree) when reporting error, and so
        // the user will more likely get a specific suggestion.
        fn free_regions_first(a: &RegionAndOrigin, b: &RegionAndOrigin) -> Ordering {
            match (a.region, b.region) {
                (ReFree(..), ReFree(..)) => Equal,
                (ReFree(..), _) => Less,
                (_, ReFree(..)) => Greater,
                (_, _) => Equal,
            }
        }
        lower_bounds.sort_by(|a, b| free_regions_first(a, b));
        upper_bounds.sort_by(|a, b| free_regions_first(a, b));

        for lower_bound in &lower_bounds {
            for upper_bound in &upper_bounds {
                if !free_regions.is_subregion_of(self.tcx, lower_bound.region, upper_bound.region) {
                    let origin = (*self.var_origins.borrow())[node_idx.index as usize].clone();
                    debug!("region inference error at {:?} for {:?}: SubSupConflict sub: {:?} \
                            sup: {:?}",
                           origin,
                           node_idx,
                           lower_bound.region,
                           upper_bound.region);
                    errors.push(SubSupConflict(origin,
                                               lower_bound.origin.clone(),
                                               lower_bound.region,
                                               upper_bound.origin.clone(),
                                               upper_bound.region));
                    return;
                }
            }
        }

        span_bug!((*self.var_origins.borrow())[node_idx.index as usize].span(),
                  "collect_error_for_expanding_node() could not find \
                   error for var {:?}, lower_bounds={:?}, \
                   upper_bounds={:?}",
                  node_idx,
                  lower_bounds,
                  upper_bounds);
    }

    fn collect_concrete_regions(&self,
                                graph: &RegionGraph,
                                orig_node_idx: RegionVid,
                                dir: Direction,
                                dup_vec: &mut [u32])
                                -> (Vec<RegionAndOrigin<'tcx>>, bool) {
        struct WalkState<'tcx> {
            set: FnvHashSet<RegionVid>,
            stack: Vec<RegionVid>,
            result: Vec<RegionAndOrigin<'tcx>>,
            dup_found: bool,
        }
        let mut state = WalkState {
            set: FnvHashSet(),
            stack: vec![orig_node_idx],
            result: Vec::new(),
            dup_found: false,
        };
        state.set.insert(orig_node_idx);

        // to start off the process, walk the source node in the
        // direction specified
        process_edges(self, &mut state, graph, orig_node_idx, dir);

        while !state.stack.is_empty() {
            let node_idx = state.stack.pop().unwrap();

            // check whether we've visited this node on some previous walk
            if dup_vec[node_idx.index as usize] == u32::MAX {
                dup_vec[node_idx.index as usize] = orig_node_idx.index;
            } else if dup_vec[node_idx.index as usize] != orig_node_idx.index {
                state.dup_found = true;
            }

            debug!("collect_concrete_regions(orig_node_idx={:?}, node_idx={:?})",
                   orig_node_idx,
                   node_idx);

            process_edges(self, &mut state, graph, node_idx, dir);
        }

        let WalkState {result, dup_found, ..} = state;
        return (result, dup_found);

        fn process_edges<'a, 'gcx, 'tcx>(this: &RegionVarBindings<'a, 'gcx, 'tcx>,
                                         state: &mut WalkState<'tcx>,
                                         graph: &RegionGraph,
                                         source_vid: RegionVid,
                                         dir: Direction) {
            debug!("process_edges(source_vid={:?}, dir={:?})", source_vid, dir);

            let source_node_index = NodeIndex(source_vid.index as usize);
            for (_, edge) in graph.adjacent_edges(source_node_index, dir) {
                match edge.data {
                    ConstrainVarSubVar(from_vid, to_vid) => {
                        let opp_vid = if from_vid == source_vid {
                            to_vid
                        } else {
                            from_vid
                        };
                        if state.set.insert(opp_vid) {
                            state.stack.push(opp_vid);
                        }
                    }

                    ConstrainRegSubVar(region, _) |
                    ConstrainVarSubReg(_, region) => {
                        state.result.push(RegionAndOrigin {
                            region: region,
                            origin: this.constraints.borrow().get(&edge.data).unwrap().clone(),
                        });
                    }
                }
            }
        }
    }

    fn iterate_until_fixed_point<F>(&self, tag: &str, mut body: F)
        where F: FnMut(&Constraint) -> bool
    {
        let mut iteration = 0;
        let mut changed = true;
        while changed {
            changed = false;
            iteration += 1;
            debug!("---- {} Iteration {}{}", "#", tag, iteration);
            for (constraint, _) in self.constraints.borrow().iter() {
                let edge_changed = body(constraint);
                if edge_changed {
                    debug!("Updated due to constraint {:?}", constraint);
                    changed = true;
                }
            }
        }
        debug!("---- {} Complete after {} iteration(s)", tag, iteration);
    }

}

impl<'tcx> fmt::Debug for Verify<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            VerifyRegSubReg(_, ref a, ref b) => {
                write!(f, "VerifyRegSubReg({:?}, {:?})", a, b)
            }
            VerifyGenericBound(_, ref p, ref a, ref bs) => {
                write!(f, "VerifyGenericBound({:?}, {:?}, {:?})", p, a, bs)
            }
        }
    }
}

fn normalize(values: &Vec<VarValue>, r: ty::Region) -> ty::Region {
    match r {
        ty::ReVar(rid) => lookup(values, rid),
        _ => r,
    }
}

fn lookup(values: &Vec<VarValue>, rid: ty::RegionVid) -> ty::Region {
    match values[rid.index as usize] {
        Value(r) => r,
        ErrorValue => ReStatic, // Previously reported error.
    }
}

impl<'tcx> fmt::Debug for RegionAndOrigin<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "RegionAndOrigin({:?},{:?})", self.region, self.origin)
    }
}

impl fmt::Debug for RegionSnapshot {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "RegionSnapshot(length={},skolemization={})",
               self.length, self.skolemization_count)
    }
}

impl<'tcx> fmt::Debug for GenericKind<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            GenericKind::Param(ref p) => write!(f, "{:?}", p),
            GenericKind::Projection(ref p) => write!(f, "{:?}", p),
        }
    }
}

impl<'tcx> fmt::Display for GenericKind<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            GenericKind::Param(ref p) => write!(f, "{}", p),
            GenericKind::Projection(ref p) => write!(f, "{}", p),
        }
    }
}

impl<'a, 'gcx, 'tcx> GenericKind<'tcx> {
    pub fn to_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
        match *self {
            GenericKind::Param(ref p) => p.to_ty(tcx),
            GenericKind::Projection(ref p) => tcx.mk_projection(p.trait_ref.clone(), p.item_name),
        }
    }
}

impl<'a, 'gcx, 'tcx> VerifyBound {
    fn for_each_region(&self, f: &mut FnMut(ty::Region)) {
        match self {
            &VerifyBound::AnyRegion(ref rs) |
            &VerifyBound::AllRegions(ref rs) => for &r in rs {
                f(r);
            },

            &VerifyBound::AnyBound(ref bs) |
            &VerifyBound::AllBounds(ref bs) => for b in bs {
                b.for_each_region(f);
            },
        }
    }

    pub fn must_hold(&self) -> bool {
        match self {
            &VerifyBound::AnyRegion(ref bs) => bs.contains(&ty::ReStatic),
            &VerifyBound::AllRegions(ref bs) => bs.is_empty(),
            &VerifyBound::AnyBound(ref bs) => bs.iter().any(|b| b.must_hold()),
            &VerifyBound::AllBounds(ref bs) => bs.iter().all(|b| b.must_hold()),
        }
    }

    pub fn cannot_hold(&self) -> bool {
        match self {
            &VerifyBound::AnyRegion(ref bs) => bs.is_empty(),
            &VerifyBound::AllRegions(ref bs) => bs.contains(&ty::ReEmpty),
            &VerifyBound::AnyBound(ref bs) => bs.iter().all(|b| b.cannot_hold()),
            &VerifyBound::AllBounds(ref bs) => bs.iter().any(|b| b.cannot_hold()),
        }
    }

    pub fn or(self, vb: VerifyBound) -> VerifyBound {
        if self.must_hold() || vb.cannot_hold() {
            self
        } else if self.cannot_hold() || vb.must_hold() {
            vb
        } else {
            VerifyBound::AnyBound(vec![self, vb])
        }
    }

    pub fn and(self, vb: VerifyBound) -> VerifyBound {
        if self.must_hold() && vb.must_hold() {
            self
        } else if self.cannot_hold() && vb.cannot_hold() {
            self
        } else {
            VerifyBound::AllBounds(vec![self, vb])
        }
    }

    fn is_met(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
              free_regions: &FreeRegionMap,
              var_values: &Vec<VarValue>,
              min: ty::Region)
              -> bool {
        match self {
            &VerifyBound::AnyRegion(ref rs) =>
                rs.iter()
                  .map(|&r| normalize(var_values, r))
                  .any(|r| free_regions.is_subregion_of(tcx, min, r)),

            &VerifyBound::AllRegions(ref rs) =>
                rs.iter()
                  .map(|&r| normalize(var_values, r))
                  .all(|r| free_regions.is_subregion_of(tcx, min, r)),

            &VerifyBound::AnyBound(ref bs) =>
                bs.iter()
                  .any(|b| b.is_met(tcx, free_regions, var_values, min)),

            &VerifyBound::AllBounds(ref bs) =>
                bs.iter()
                  .all(|b| b.is_met(tcx, free_regions, var_values, min)),
        }
    }
}